Compare commits

..

22 Commits

Author SHA1 Message Date
J. Nick Koston
a51fcf9be2 Merge branch 'dev' into api-stringref-user-services 2026-02-13 06:54:06 -06:00
J. Nick Koston
b04e427f01 [usb_host] Extract cold path from loop(), replace std::string with buffer API (#13957)
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2026-02-13 06:39:00 -06:00
J. Nick Koston
0b2f79480b [api] Use StringRef for user service string arguments
Replace std::string with StringRef (non-owning string view) for
user service string arguments in YAML-generated services. This
avoids unnecessary heap allocation when the protobuf decode buffer
already contains the string data.

Key changes:
- Frame helpers reserve +1 byte in rx_buf_ so string fields can be
  safely null-terminated in-place after decode
- Add (null_terminate) protobuf field option to target only fields
  that need it (ExecuteServiceArgument.string_ and
  HomeAssistantStateResponse.state)
- Add StringRef template specializations for get_execute_arg_value
  and to_service_arg_type
- Python codegen uses StringRef for string service args, with
  automatic std::string fallback when deferred actions (delay,
  wait_until, script.wait) are present in the action chain
- Add deferred flag to action registry for detecting actions that
  store trigger args for later execution
- Simplify HomeAssistantStateResponse handler by removing
  SmallBufferWithHeapFallback copy (state is null-terminated
  in-place)
- Add compare() method to StringRef for external component
  compatibility

Saves ~240 bytes of flash on ESP8266 by eliminating std::string
template instantiations for user service string arguments.
2026-02-12 19:51:39 -06:00
J. Nick Koston
e0c03b2dfa [api] Fix ESP8266 noise API handshake deadlock and prompt socket cleanup (#13972) 2026-02-12 18:20:58 -06:00
J. Nick Koston
7dff631dcb [core] Flatten single-callsite vector realloc functions (#13970) 2026-02-12 18:20:39 -06:00
J. Nick Koston
36aba385af [web_server] Flatten deq_push_back_with_dedup_ to inline vector realloc (#13968) 2026-02-12 18:20:21 -06:00
Jonathan Swoboda
136d17366f [docker] Suppress git detached HEAD advice (#13962)
Co-authored-by: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-12 16:12:17 -05:00
Jonathan Swoboda
db7870ef5f [alarm_control_panel] Fix flaky integration test race condition (#13964)
Co-authored-by: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-12 16:04:39 -05:00
dependabot[bot]
bbc88d92ea Bump docker/build-push-action from 6.19.1 to 6.19.2 in /.github/actions/build-image (#13965)
Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2026-02-12 14:31:43 -06:00
Jesse Hills
1604b5d6e4 Merge branch 'beta' into dev 2026-02-13 07:11:49 +13:00
Jesse Hills
e000858d77 Merge pull request #13951 from esphome/bump-2026.2.0b1
2026.2.0b1
2026-02-13 07:11:07 +13:00
J. Nick Koston
7fd535179e [helpers] Add heap warnings to format_hex_pretty, deprecate ethernet/web_server std::string APIs (#13959) 2026-02-12 17:47:44 +00:00
Lukáš Maňas
e3a457e402 [pulse_meter] Fix early edge detection (#12360)
Co-authored-by: pre-commit-ci-lite[bot] <117423508+pre-commit-ci-lite[bot]@users.noreply.github.com>
Co-authored-by: Jonathan Swoboda <154711427+swoboda1337@users.noreply.github.com>
2026-02-12 17:20:54 +00:00
J. Nick Koston
0dcff82bb4 [wifi] Deprecate wifi_ssid() in favor of wifi_ssid_to() (#13958) 2026-02-12 17:14:36 +00:00
J. Nick Koston
cde8b66719 [web_server] Switch from getParam to arg API to eliminate heap allocations (#13942) 2026-02-12 11:04:41 -06:00
J. Nick Koston
0e1433329d [api] Extract cold code from APIServer::loop() hot path (#13902) 2026-02-12 11:04:23 -06:00
J. Nick Koston
60fef5e656 [analyze_memory] Fix mDNS packet buffer miscategorized as wifi_config (#13949)
Co-authored-by: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-12 10:26:54 -06:00
J. Nick Koston
725e774fe7 [web_server] Guard icon JSON field with USE_ENTITY_ICON (#13948) 2026-02-12 10:26:36 -06:00
J. Nick Koston
9aa98ed6c6 [uart] Remove redundant mutex, fix flush race, conditional event queue (#13955) 2026-02-12 10:26:10 -06:00
Guillermo Ruffino
7b251dcc31 [schema-gen] fix Windows: ensure UTF-8 encoding when reading component files (#13952) 2026-02-12 11:23:59 -05:00
schrob
8a08c688f6 [mipi_spi] Add Waveshare 1.83 v2 panel (#13680) 2026-02-12 23:25:51 +11:00
Jesse Hills
97d6f394de Bump version to 2026.2.0b1 2026-02-12 23:04:18 +13:00
49 changed files with 760 additions and 2517 deletions

View File

@@ -47,7 +47,7 @@ runs:
- name: Build and push to ghcr by digest
id: build-ghcr
uses: docker/build-push-action@601a80b39c9405e50806ae38af30926f9d957c47 # v6.19.1
uses: docker/build-push-action@10e90e3645eae34f1e60eeb005ba3a3d33f178e8 # v6.19.2
env:
DOCKER_BUILD_SUMMARY: false
DOCKER_BUILD_RECORD_UPLOAD: false
@@ -73,7 +73,7 @@ runs:
- name: Build and push to dockerhub by digest
id: build-dockerhub
uses: docker/build-push-action@601a80b39c9405e50806ae38af30926f9d957c47 # v6.19.1
uses: docker/build-push-action@10e90e3645eae34f1e60eeb005ba3a3d33f178e8 # v6.19.2
env:
DOCKER_BUILD_SUMMARY: false
DOCKER_BUILD_RECORD_UPLOAD: false

View File

@@ -9,7 +9,8 @@ FROM ghcr.io/esphome/docker-base:${BUILD_OS}-ha-addon-${BUILD_BASE_VERSION} AS b
ARG BUILD_TYPE
FROM base-source-${BUILD_TYPE} AS base
RUN git config --system --add safe.directory "*"
RUN git config --system --add safe.directory "*" \
&& git config --system advice.detachedHead false
# Install build tools for Python packages that require compilation
# (e.g., ruamel.yaml.clibz used by ESP-IDF's idf-component-manager)

View File

@@ -256,7 +256,7 @@ SYMBOL_PATTERNS = {
"ipv6_stack": ["nd6_", "ip6_", "mld6_", "icmp6_", "icmp6_input"],
# Order matters! More specific categories must come before general ones.
# mdns must come before bluetooth to avoid "_mdns_disable_pcb" matching "ble_" pattern
"mdns_lib": ["mdns"],
"mdns_lib": ["mdns", "packet$"],
# memory_mgmt must come before wifi_stack to catch mmu_hal_* symbols
"memory_mgmt": [
"mem_",
@@ -794,7 +794,6 @@ SYMBOL_PATTERNS = {
"s_dp",
"s_ni",
"s_reg_dump",
"packet$",
"d_mult_table",
"K",
"fcstab",

View File

@@ -57,8 +57,14 @@ def maybe_conf(conf, *validators):
return validate
def register_action(name: str, action_type: MockObjClass, schema: cv.Schema):
return ACTION_REGISTRY.register(name, action_type, schema)
def register_action(
name: str,
action_type: MockObjClass,
schema: cv.Schema,
*,
deferred: bool = False,
):
return ACTION_REGISTRY.register(name, action_type, schema, deferred=deferred)
def register_condition(name: str, condition_type: MockObjClass, schema: cv.Schema):
@@ -335,7 +341,10 @@ async def component_is_idle_condition_to_code(
@register_action(
"delay", DelayAction, cv.templatable(cv.positive_time_period_milliseconds)
"delay",
DelayAction,
cv.templatable(cv.positive_time_period_milliseconds),
deferred=True,
)
async def delay_action_to_code(
config: ConfigType,
@@ -445,7 +454,7 @@ _validate_wait_until = cv.maybe_simple_value(
)
@register_action("wait_until", WaitUntilAction, _validate_wait_until)
@register_action("wait_until", WaitUntilAction, _validate_wait_until, deferred=True)
async def wait_until_action_to_code(
config: ConfigType,
action_id: ID,
@@ -578,6 +587,26 @@ async def build_condition_list(
return conditions
def has_deferred_actions(actions: ConfigType) -> bool:
"""Check if a validated action list contains any deferred actions.
Deferred actions (delay, wait_until, script.wait) store trigger args
for later execution, making non-owning types like StringRef unsafe.
"""
if isinstance(actions, list):
return any(has_deferred_actions(item) for item in actions)
if isinstance(actions, dict):
for key in actions:
if key in ACTION_REGISTRY and ACTION_REGISTRY[key].deferred:
return True
return any(
has_deferred_actions(v)
for v in actions.values()
if isinstance(v, (list, dict))
)
return False
async def build_automation(
trigger: MockObj, args: TemplateArgsType, config: ConfigType
) -> MockObj:

View File

@@ -76,7 +76,7 @@ SERVICE_ARG_NATIVE_TYPES: dict[str, MockObj] = {
"bool": cg.bool_,
"int": cg.int32,
"float": cg.float_,
"string": cg.std_string,
"string": cg.StringRef,
"bool[]": cg.FixedVector.template(cg.bool_).operator("const").operator("ref"),
"int[]": cg.FixedVector.template(cg.int32).operator("const").operator("ref"),
"float[]": cg.FixedVector.template(cg.float_).operator("const").operator("ref"),
@@ -380,9 +380,16 @@ async def to_code(config: ConfigType) -> None:
if is_optional:
func_args.append((cg.bool_, "return_response"))
# Check if action chain has deferred actions that would make
# non-owning StringRef dangle (rx_buf_ reused after delay)
has_deferred = automation.has_deferred_actions(conf.get(CONF_THEN, []))
service_arg_names: list[str] = []
for name, var_ in conf[CONF_VARIABLES].items():
native = SERVICE_ARG_NATIVE_TYPES[var_]
# Fall back to std::string for string args if deferred actions exist
if has_deferred and native is cg.StringRef:
native = cg.std_string
service_template_args.append(native)
func_args.append((native, name))
service_arg_names.append(name)

View File

@@ -824,7 +824,7 @@ message HomeAssistantStateResponse {
option (ifdef) = "USE_API_HOMEASSISTANT_STATES";
string entity_id = 1;
string state = 2;
string state = 2 [(null_terminate) = true];
string attribute = 3;
}
@@ -882,7 +882,7 @@ message ExecuteServiceArgument {
bool bool_ = 1;
int32 legacy_int = 2;
float float_ = 3;
string string_ = 4;
string string_ = 4 [(null_terminate) = true];
// ESPHome 1.14 (api v1.3) make int a signed value
sint32 int_ = 5;
repeated bool bool_array = 6 [packed=false, (fixed_vector) = true];

View File

@@ -1683,31 +1683,18 @@ void APIConnection::on_home_assistant_state_response(const HomeAssistantStateRes
}
for (auto &it : this->parent_->get_state_subs()) {
// Compare entity_id: check length matches and content matches
size_t entity_id_len = strlen(it.entity_id);
if (entity_id_len != msg.entity_id.size() ||
memcmp(it.entity_id, msg.entity_id.c_str(), msg.entity_id.size()) != 0) {
if (msg.entity_id != it.entity_id) {
continue;
}
// Compare attribute: either both have matching attribute, or both have none
size_t sub_attr_len = it.attribute != nullptr ? strlen(it.attribute) : 0;
if (sub_attr_len != msg.attribute.size() ||
(sub_attr_len > 0 && memcmp(it.attribute, msg.attribute.c_str(), sub_attr_len) != 0)) {
// it.attribute can be nullptr (meaning no attribute filter)
if (it.attribute != nullptr ? msg.attribute != it.attribute : !msg.attribute.empty()) {
continue;
}
// Create null-terminated state for callback (parse_number needs null-termination)
// HA state max length is 255 characters, but attributes can be much longer
// Use stack buffer for common case (states), heap fallback for large attributes
size_t state_len = msg.state.size();
SmallBufferWithHeapFallback<MAX_STATE_LEN + 1> state_buf_alloc(state_len + 1);
char *state_buf = reinterpret_cast<char *>(state_buf_alloc.get());
if (state_len > 0) {
memcpy(state_buf, msg.state.c_str(), state_len);
}
state_buf[state_len] = '\0';
it.callback(StringRef(state_buf, state_len));
// msg.state is already null-terminated in-place after protobuf decode
it.callback(msg.state);
}
}
#endif
@@ -1864,6 +1851,8 @@ void APIConnection::on_fatal_error() {
this->flags_.remove = true;
}
void __attribute__((flatten)) APIConnection::DeferredBatch::push_item(const BatchItem &item) { items.push_back(item); }
void APIConnection::DeferredBatch::add_item(EntityBase *entity, uint8_t message_type, uint8_t estimated_size,
uint8_t aux_data_index) {
// Check if we already have a message of this type for this entity
@@ -1880,7 +1869,7 @@ void APIConnection::DeferredBatch::add_item(EntityBase *entity, uint8_t message_
}
}
// No existing item found (or event), add new one
items.push_back({entity, message_type, estimated_size, aux_data_index});
this->push_item({entity, message_type, estimated_size, aux_data_index});
}
void APIConnection::DeferredBatch::add_item_front(EntityBase *entity, uint8_t message_type, uint8_t estimated_size) {
@@ -1888,7 +1877,7 @@ void APIConnection::DeferredBatch::add_item_front(EntityBase *entity, uint8_t me
// This avoids expensive vector::insert which shifts all elements
// Note: We only ever have one high-priority message at a time (ping OR disconnect)
// If we're disconnecting, pings are blocked, so this simple swap is sufficient
items.push_back({entity, message_type, estimated_size, AUX_DATA_UNUSED});
this->push_item({entity, message_type, estimated_size, AUX_DATA_UNUSED});
if (items.size() > 1) {
// Swap the new high-priority item to the front
std::swap(items.front(), items.back());

View File

@@ -541,6 +541,8 @@ class APIConnection final : public APIServerConnectionBase {
uint8_t aux_data_index = AUX_DATA_UNUSED);
// Add item to the front of the batch (for high priority messages like ping)
void add_item_front(EntityBase *entity, uint8_t message_type, uint8_t estimated_size);
// Single push_back site to avoid duplicate _M_realloc_insert instantiation
void push_item(const BatchItem &item);
// Clear all items
void clear() {

View File

@@ -138,10 +138,12 @@ APIError APINoiseFrameHelper::handle_noise_error_(int err, const LogString *func
/// Run through handshake messages (if in that phase)
APIError APINoiseFrameHelper::loop() {
// During handshake phase, process as many actions as possible until we can't progress
// socket_->ready() stays true until next main loop, but state_action() will return
// WOULD_BLOCK when no more data is available to read
while (state_ != State::DATA && this->socket_->ready()) {
// Cache ready() outside the loop. On ESP8266 LWIP raw TCP, ready() returns false once
// the rx buffer is consumed. Re-checking each iteration would block handshake writes
// that must follow reads, deadlocking the handshake. state_action() will return
// WOULD_BLOCK when no more data is available to read.
bool socket_ready = this->socket_->ready();
while (state_ != State::DATA && socket_ready) {
APIError err = state_action_();
if (err == APIError::WOULD_BLOCK) {
break;
@@ -199,9 +201,10 @@ APIError APINoiseFrameHelper::try_read_frame_() {
return (state_ == State::DATA) ? APIError::BAD_DATA_PACKET : APIError::BAD_HANDSHAKE_PACKET_LEN;
}
// Reserve space for body
if (this->rx_buf_.size() != msg_size) {
this->rx_buf_.resize(msg_size);
// Reserve space for body (+1 for null terminator so protobuf StringRef fields
// can be safely null-terminated in-place after decode)
if (this->rx_buf_.size() != msg_size + 1) {
this->rx_buf_.resize(msg_size + 1);
}
if (rx_buf_len_ < msg_size) {

View File

@@ -163,9 +163,10 @@ APIError APIPlaintextFrameHelper::try_read_frame_() {
}
// header reading done
// Reserve space for body
if (this->rx_buf_.size() != this->rx_header_parsed_len_) {
this->rx_buf_.resize(this->rx_header_parsed_len_);
// Reserve space for body (+1 for null terminator so protobuf StringRef fields
// can be safely null-terminated in-place after decode)
if (this->rx_buf_.size() != this->rx_header_parsed_len_ + 1) {
this->rx_buf_.resize(this->rx_header_parsed_len_ + 1);
}
if (rx_buf_len_ < rx_header_parsed_len_) {

View File

@@ -90,4 +90,13 @@ extend google.protobuf.FieldOptions {
// - uint16_t <field>_length_{0};
// - uint16_t <field>_count_{0};
optional bool packed_buffer = 50015 [default=false];
// null_terminate: Write a null byte after string data in the decode buffer.
// When set on a string field in a SOURCE_CLIENT (decodable) message, the
// generated decode() override writes '\0' at data[length] after decoding.
// This makes the StringRef safe for c_str() usage without copying.
// Safe because: (1) frame helpers reserve +1 byte in rx_buf_, and
// (2) the overwritten byte was already consumed during decode.
// Only mark fields that actually need null-terminated access.
optional bool null_terminate = 50016 [default=false];
}

View File

@@ -953,6 +953,12 @@ bool HomeAssistantStateResponse::decode_length(uint32_t field_id, ProtoLengthDel
}
return true;
}
void HomeAssistantStateResponse::decode(const uint8_t *buffer, size_t length) {
ProtoDecodableMessage::decode(buffer, length);
if (!this->state.empty()) {
const_cast<char *>(this->state.c_str())[this->state.size()] = '\0';
}
}
#endif
bool GetTimeResponse::decode_length(uint32_t field_id, ProtoLengthDelimited value) {
switch (field_id) {
@@ -1057,6 +1063,9 @@ void ExecuteServiceArgument::decode(const uint8_t *buffer, size_t length) {
uint32_t count_string_array = ProtoDecodableMessage::count_repeated_field(buffer, length, 9);
this->string_array.init(count_string_array);
ProtoDecodableMessage::decode(buffer, length);
if (!this->string_.empty()) {
const_cast<char *>(this->string_.c_str())[this->string_.size()] = '\0';
}
}
bool ExecuteServiceRequest::decode_varint(uint32_t field_id, ProtoVarInt value) {
switch (field_id) {

View File

@@ -1095,6 +1095,7 @@ class HomeAssistantStateResponse final : public ProtoDecodableMessage {
StringRef entity_id{};
StringRef state{};
StringRef attribute{};
void decode(const uint8_t *buffer, size_t length) override;
#ifdef HAS_PROTO_MESSAGE_DUMP
const char *dump_to(DumpBuffer &out) const override;
#endif

View File

@@ -117,37 +117,7 @@ void APIServer::setup() {
void APIServer::loop() {
// Accept new clients only if the socket exists and has incoming connections
if (this->socket_ && this->socket_->ready()) {
while (true) {
struct sockaddr_storage source_addr;
socklen_t addr_len = sizeof(source_addr);
auto sock = this->socket_->accept_loop_monitored((struct sockaddr *) &source_addr, &addr_len);
if (!sock)
break;
char peername[socket::SOCKADDR_STR_LEN];
sock->getpeername_to(peername);
// Check if we're at the connection limit
if (this->clients_.size() >= this->max_connections_) {
ESP_LOGW(TAG, "Max connections (%d), rejecting %s", this->max_connections_, peername);
// Immediately close - socket destructor will handle cleanup
sock.reset();
continue;
}
ESP_LOGD(TAG, "Accept %s", peername);
auto *conn = new APIConnection(std::move(sock), this);
this->clients_.emplace_back(conn);
conn->start();
// First client connected - clear warning and update timestamp
if (this->clients_.size() == 1 && this->reboot_timeout_ != 0) {
this->status_clear_warning();
this->last_connected_ = App.get_loop_component_start_time();
}
}
this->accept_new_connections_();
}
if (this->clients_.empty()) {
@@ -178,46 +148,88 @@ void APIServer::loop() {
while (client_index < this->clients_.size()) {
auto &client = this->clients_[client_index];
// Common case: process active client
if (!client->flags_.remove) {
// Common case: process active client
client->loop();
}
// Handle disconnection promptly - close socket to free LWIP PCB
// resources and prevent retransmit crashes on ESP8266.
if (client->flags_.remove) {
// Rare case: handle disconnection (don't increment - swapped element needs processing)
this->remove_client_(client_index);
} else {
client_index++;
}
}
}
void APIServer::remove_client_(size_t client_index) {
auto &client = this->clients_[client_index];
#ifdef USE_API_USER_DEFINED_ACTION_RESPONSES
this->unregister_active_action_calls_for_connection(client.get());
#endif
ESP_LOGV(TAG, "Remove connection %s", client->get_name());
#ifdef USE_API_CLIENT_DISCONNECTED_TRIGGER
// Save client info before closing socket and removal for the trigger
char peername_buf[socket::SOCKADDR_STR_LEN];
std::string client_name(client->get_name());
std::string client_peername(client->get_peername_to(peername_buf));
#endif
// Close socket now (was deferred from on_fatal_error to allow getpeername)
client->helper_->close();
// Swap with the last element and pop (avoids expensive vector shifts)
if (client_index < this->clients_.size() - 1) {
std::swap(this->clients_[client_index], this->clients_.back());
}
this->clients_.pop_back();
// Last client disconnected - set warning and start tracking for reboot timeout
if (this->clients_.empty() && this->reboot_timeout_ != 0) {
this->status_set_warning();
this->last_connected_ = App.get_loop_component_start_time();
}
#ifdef USE_API_CLIENT_DISCONNECTED_TRIGGER
// Fire trigger after client is removed so api.connected reflects the true state
this->client_disconnected_trigger_.trigger(client_name, client_peername);
#endif
}
void __attribute__((flatten)) APIServer::accept_new_connections_() {
while (true) {
struct sockaddr_storage source_addr;
socklen_t addr_len = sizeof(source_addr);
auto sock = this->socket_->accept_loop_monitored((struct sockaddr *) &source_addr, &addr_len);
if (!sock)
break;
char peername[socket::SOCKADDR_STR_LEN];
sock->getpeername_to(peername);
// Check if we're at the connection limit
if (this->clients_.size() >= this->max_connections_) {
ESP_LOGW(TAG, "Max connections (%d), rejecting %s", this->max_connections_, peername);
// Immediately close - socket destructor will handle cleanup
sock.reset();
continue;
}
// Rare case: handle disconnection
#ifdef USE_API_USER_DEFINED_ACTION_RESPONSES
this->unregister_active_action_calls_for_connection(client.get());
#endif
ESP_LOGV(TAG, "Remove connection %s", client->get_name());
ESP_LOGD(TAG, "Accept %s", peername);
#ifdef USE_API_CLIENT_DISCONNECTED_TRIGGER
// Save client info before closing socket and removal for the trigger
char peername_buf[socket::SOCKADDR_STR_LEN];
std::string client_name(client->get_name());
std::string client_peername(client->get_peername_to(peername_buf));
#endif
auto *conn = new APIConnection(std::move(sock), this);
this->clients_.emplace_back(conn);
conn->start();
// Close socket now (was deferred from on_fatal_error to allow getpeername)
client->helper_->close();
// Swap with the last element and pop (avoids expensive vector shifts)
if (client_index < this->clients_.size() - 1) {
std::swap(this->clients_[client_index], this->clients_.back());
}
this->clients_.pop_back();
// Last client disconnected - set warning and start tracking for reboot timeout
if (this->clients_.empty() && this->reboot_timeout_ != 0) {
this->status_set_warning();
// First client connected - clear warning and update timestamp
if (this->clients_.size() == 1 && this->reboot_timeout_ != 0) {
this->status_clear_warning();
this->last_connected_ = App.get_loop_component_start_time();
}
#ifdef USE_API_CLIENT_DISCONNECTED_TRIGGER
// Fire trigger after client is removed so api.connected reflects the true state
this->client_disconnected_trigger_.trigger(client_name, client_peername);
#endif
// Don't increment client_index since we need to process the swapped element
}
}

View File

@@ -234,6 +234,11 @@ class APIServer : public Component,
#endif
protected:
// Accept incoming socket connections. Only called when socket has pending connections.
void __attribute__((noinline)) accept_new_connections_();
// Remove a disconnected client by index. Swaps with last element and pops.
void __attribute__((noinline)) remove_client_(size_t client_index);
#ifdef USE_API_NOISE
bool update_noise_psk_(const SavedNoisePsk &new_psk, const LogString *save_log_msg, const LogString *fail_log_msg,
const psk_t &active_psk, bool make_active);

View File

@@ -1,5 +1,6 @@
#include "user_services.h"
#include "esphome/core/log.h"
#include "esphome/core/string_ref.h"
namespace esphome::api {
@@ -11,6 +12,8 @@ template<> int32_t get_execute_arg_value<int32_t>(const ExecuteServiceArgument &
}
template<> float get_execute_arg_value<float>(const ExecuteServiceArgument &arg) { return arg.float_; }
template<> std::string get_execute_arg_value<std::string>(const ExecuteServiceArgument &arg) { return arg.string_; }
// Zero-copy StringRef version for YAML-generated services (string_ is null-terminated after decode)
template<> StringRef get_execute_arg_value<StringRef>(const ExecuteServiceArgument &arg) { return arg.string_; }
// Legacy std::vector versions for external components using custom_api_device.h - optimized with reserve
template<> std::vector<bool> get_execute_arg_value<std::vector<bool>>(const ExecuteServiceArgument &arg) {
@@ -61,6 +64,8 @@ template<> enums::ServiceArgType to_service_arg_type<bool>() { return enums::SER
template<> enums::ServiceArgType to_service_arg_type<int32_t>() { return enums::SERVICE_ARG_TYPE_INT; }
template<> enums::ServiceArgType to_service_arg_type<float>() { return enums::SERVICE_ARG_TYPE_FLOAT; }
template<> enums::ServiceArgType to_service_arg_type<std::string>() { return enums::SERVICE_ARG_TYPE_STRING; }
// Zero-copy StringRef version for YAML-generated services
template<> enums::ServiceArgType to_service_arg_type<StringRef>() { return enums::SERVICE_ARG_TYPE_STRING; }
// Legacy std::vector versions for external components using custom_api_device.h
template<> enums::ServiceArgType to_service_arg_type<std::vector<bool>>() { return enums::SERVICE_ARG_TYPE_BOOL_ARRAY; }

View File

@@ -47,8 +47,8 @@ void CaptivePortal::handle_config(AsyncWebServerRequest *request) {
request->send(stream);
}
void CaptivePortal::handle_wifisave(AsyncWebServerRequest *request) {
std::string ssid = request->arg("ssid").c_str(); // NOLINT(readability-redundant-string-cstr)
std::string psk = request->arg("psk").c_str(); // NOLINT(readability-redundant-string-cstr)
const auto &ssid = request->arg("ssid");
const auto &psk = request->arg("psk");
ESP_LOGI(TAG,
"Requested WiFi Settings Change:\n"
" SSID='%s'\n"
@@ -56,10 +56,10 @@ void CaptivePortal::handle_wifisave(AsyncWebServerRequest *request) {
ssid.c_str(), psk.c_str());
#ifdef USE_ESP8266
// ESP8266 is single-threaded, call directly
wifi::global_wifi_component->save_wifi_sta(ssid, psk);
wifi::global_wifi_component->save_wifi_sta(ssid.c_str(), psk.c_str());
#else
// Defer save to main loop thread to avoid NVS operations from HTTP thread
this->defer([ssid, psk]() { wifi::global_wifi_component->save_wifi_sta(ssid, psk); });
this->defer([ssid, psk]() { wifi::global_wifi_component->save_wifi_sta(ssid.c_str(), psk.c_str()); });
#endif
request->redirect(ESPHOME_F("/?save"));
}

View File

@@ -110,6 +110,8 @@ class EthernetComponent : public Component {
const char *get_use_address() const;
void set_use_address(const char *use_address);
void get_eth_mac_address_raw(uint8_t *mac);
// Remove before 2026.9.0
ESPDEPRECATED("Use get_eth_mac_address_pretty_into_buffer() instead. Removed in 2026.9.0", "2026.3.0")
std::string get_eth_mac_address_pretty();
const char *get_eth_mac_address_pretty_into_buffer(std::span<char, MAC_ADDRESS_PRETTY_BUFFER_SIZE> buf);
eth_duplex_t get_duplex_mode();

View File

@@ -1,4 +1,17 @@
from esphome.components.mipi import DriverChip
from esphome.components.mipi import (
ETMOD,
FRMCTR2,
GMCTRN1,
GMCTRP1,
IFCTR,
MODE_RGB,
PWCTR1,
PWCTR3,
PWCTR4,
PWCTR5,
PWSET,
DriverChip,
)
import esphome.config_validation as cv
from .amoled import CO5300
@@ -129,6 +142,16 @@ DriverChip(
),
),
)
ST7789P = DriverChip(
"ST7789P",
# Max supported dimensions
width=240,
height=320,
# SPI: RGB layout
color_order=MODE_RGB,
invert_colors=True,
draw_rounding=1,
)
ILI9488_A.extend(
"PICO-RESTOUCH-LCD-3.5",
@@ -162,3 +185,61 @@ AXS15231.extend(
cs_pin=9,
reset_pin=21,
)
# Waveshare 1.83-v2
#
# Do not use on 1.83-v1: Vendor warning on different chip!
ST7789P.extend(
"WAVESHARE-1.83-V2",
# Panel size smaller than ST7789 max allowed
width=240,
height=284,
# Vendor specific init derived from vendor sample code
# "LCD_1.83_Code_Rev2/ESP32/LCD_1in83/LCD_Driver.cpp"
# Compatible MIT license, see esphome/LICENSE file.
initsequence=(
(FRMCTR2, 0x0C, 0x0C, 0x00, 0x33, 0x33),
(ETMOD, 0x35),
(0xBB, 0x19),
(PWCTR1, 0x2C),
(PWCTR3, 0x01),
(PWCTR4, 0x12),
(PWCTR5, 0x20),
(IFCTR, 0x0F),
(PWSET, 0xA4, 0xA1),
(
GMCTRP1,
0xD0,
0x04,
0x0D,
0x11,
0x13,
0x2B,
0x3F,
0x54,
0x4C,
0x18,
0x0D,
0x0B,
0x1F,
0x23,
),
(
GMCTRN1,
0xD0,
0x04,
0x0C,
0x11,
0x13,
0x2C,
0x3F,
0x44,
0x51,
0x2F,
0x1F,
0x1F,
0x20,
0x23,
),
),
)

View File

@@ -38,8 +38,7 @@ void PulseMeterSensor::setup() {
}
void PulseMeterSensor::loop() {
// Reset the count in get before we pass it back to the ISR as set
this->get_->count_ = 0;
State state;
{
// Lock the interrupt so the interrupt code doesn't interfere with itself
@@ -58,31 +57,35 @@ void PulseMeterSensor::loop() {
}
this->last_pin_val_ = current;
// Swap out set and get to get the latest state from the ISR
std::swap(this->set_, this->get_);
// Get the latest state from the ISR and reset the count in the ISR
state.last_detected_edge_us_ = this->state_.last_detected_edge_us_;
state.last_rising_edge_us_ = this->state_.last_rising_edge_us_;
state.count_ = this->state_.count_;
this->state_.count_ = 0;
}
const uint32_t now = micros();
// If an edge was peeked, repay the debt
if (this->peeked_edge_ && this->get_->count_ > 0) {
if (this->peeked_edge_ && state.count_ > 0) {
this->peeked_edge_ = false;
this->get_->count_--; // NOLINT(clang-diagnostic-deprecated-volatile)
state.count_--;
}
// If there is an unprocessed edge, and filter_us_ has passed since, count this edge early
if (this->get_->last_rising_edge_us_ != this->get_->last_detected_edge_us_ &&
now - this->get_->last_rising_edge_us_ >= this->filter_us_) {
// If there is an unprocessed edge, and filter_us_ has passed since, count this edge early.
// Wait for the debt to be repaid before counting another unprocessed edge early.
if (!this->peeked_edge_ && state.last_rising_edge_us_ != state.last_detected_edge_us_ &&
now - state.last_rising_edge_us_ >= this->filter_us_) {
this->peeked_edge_ = true;
this->get_->last_detected_edge_us_ = this->get_->last_rising_edge_us_;
this->get_->count_++; // NOLINT(clang-diagnostic-deprecated-volatile)
state.last_detected_edge_us_ = state.last_rising_edge_us_;
state.count_++;
}
// Check if we detected a pulse this loop
if (this->get_->count_ > 0) {
if (state.count_ > 0) {
// Keep a running total of pulses if a total sensor is configured
if (this->total_sensor_ != nullptr) {
this->total_pulses_ += this->get_->count_;
this->total_pulses_ += state.count_;
const uint32_t total = this->total_pulses_;
this->total_sensor_->publish_state(total);
}
@@ -94,15 +97,15 @@ void PulseMeterSensor::loop() {
this->meter_state_ = MeterState::RUNNING;
} break;
case MeterState::RUNNING: {
uint32_t delta_us = this->get_->last_detected_edge_us_ - this->last_processed_edge_us_;
float pulse_width_us = delta_us / float(this->get_->count_);
ESP_LOGV(TAG, "New pulse, delta: %" PRIu32 " µs, count: %" PRIu32 ", width: %.5f µs", delta_us,
this->get_->count_, pulse_width_us);
uint32_t delta_us = state.last_detected_edge_us_ - this->last_processed_edge_us_;
float pulse_width_us = delta_us / float(state.count_);
ESP_LOGV(TAG, "New pulse, delta: %" PRIu32 " µs, count: %" PRIu32 ", width: %.5f µs", delta_us, state.count_,
pulse_width_us);
this->publish_state((60.0f * 1000000.0f) / pulse_width_us);
} break;
}
this->last_processed_edge_us_ = this->get_->last_detected_edge_us_;
this->last_processed_edge_us_ = state.last_detected_edge_us_;
}
// No detected edges this loop
else {
@@ -141,14 +144,14 @@ void IRAM_ATTR PulseMeterSensor::edge_intr(PulseMeterSensor *sensor) {
// This is an interrupt handler - we can't call any virtual method from this method
// Get the current time before we do anything else so the measurements are consistent
const uint32_t now = micros();
auto &state = sensor->edge_state_;
auto &set = *sensor->set_;
auto &edge_state = sensor->edge_state_;
auto &state = sensor->state_;
if ((now - state.last_sent_edge_us_) >= sensor->filter_us_) {
state.last_sent_edge_us_ = now;
set.last_detected_edge_us_ = now;
set.last_rising_edge_us_ = now;
set.count_++; // NOLINT(clang-diagnostic-deprecated-volatile)
if ((now - edge_state.last_sent_edge_us_) >= sensor->filter_us_) {
edge_state.last_sent_edge_us_ = now;
state.last_detected_edge_us_ = now;
state.last_rising_edge_us_ = now;
state.count_++; // NOLINT(clang-diagnostic-deprecated-volatile)
}
// This ISR is bound to rising edges, so the pin is high
@@ -160,26 +163,26 @@ void IRAM_ATTR PulseMeterSensor::pulse_intr(PulseMeterSensor *sensor) {
// Get the current time before we do anything else so the measurements are consistent
const uint32_t now = micros();
const bool pin_val = sensor->isr_pin_.digital_read();
auto &state = sensor->pulse_state_;
auto &set = *sensor->set_;
auto &pulse_state = sensor->pulse_state_;
auto &state = sensor->state_;
// Filter length has passed since the last interrupt
const bool length = now - state.last_intr_ >= sensor->filter_us_;
const bool length = now - pulse_state.last_intr_ >= sensor->filter_us_;
if (length && state.latched_ && !sensor->last_pin_val_) { // Long enough low edge
state.latched_ = false;
} else if (length && !state.latched_ && sensor->last_pin_val_) { // Long enough high edge
state.latched_ = true;
set.last_detected_edge_us_ = state.last_intr_;
set.count_++; // NOLINT(clang-diagnostic-deprecated-volatile)
if (length && pulse_state.latched_ && !sensor->last_pin_val_) { // Long enough low edge
pulse_state.latched_ = false;
} else if (length && !pulse_state.latched_ && sensor->last_pin_val_) { // Long enough high edge
pulse_state.latched_ = true;
state.last_detected_edge_us_ = pulse_state.last_intr_;
state.count_++; // NOLINT(clang-diagnostic-deprecated-volatile)
}
// Due to order of operations this includes
// length && latched && rising (just reset from a long low edge)
// !latched && (rising || high) (noise on the line resetting the potential rising edge)
set.last_rising_edge_us_ = !state.latched_ && pin_val ? now : set.last_detected_edge_us_;
state.last_rising_edge_us_ = !pulse_state.latched_ && pin_val ? now : state.last_detected_edge_us_;
state.last_intr_ = now;
pulse_state.last_intr_ = now;
sensor->last_pin_val_ = pin_val;
}

View File

@@ -46,17 +46,16 @@ class PulseMeterSensor : public sensor::Sensor, public Component {
uint32_t total_pulses_ = 0;
uint32_t last_processed_edge_us_ = 0;
// This struct (and the two pointers) are used to pass data between the ISR and loop.
// These two pointers are exchanged each loop.
// Use these to send data from the ISR to the loop not the other way around (except for resetting the values).
// This struct and variable are used to pass data between the ISR and loop.
// The data from state_ is read and then count_ in state_ is reset in each loop.
// This must be done while guarded by an InterruptLock. Use this variable to send data
// from the ISR to the loop not the other way around (except for resetting count_).
struct State {
uint32_t last_detected_edge_us_ = 0;
uint32_t last_rising_edge_us_ = 0;
uint32_t count_ = 0;
};
State state_[2];
volatile State *set_ = state_;
volatile State *get_ = state_ + 1;
volatile State state_{};
// Only use the following variables in the ISR or while guarded by an InterruptLock
ISRInternalGPIOPin isr_pin_;

View File

@@ -219,6 +219,7 @@ async def script_stop_action_to_code(config, action_id, template_arg, args):
"script.wait",
ScriptWaitAction,
maybe_simple_id({cv.Required(CONF_ID): cv.use_id(Script)}),
deferred=True,
)
async def script_wait_action_to_code(config, action_id, template_arg, args):
full_id, paren = await cg.get_variable_with_full_id(config[CONF_ID])

View File

@@ -1,481 +0,0 @@
#include "esphome/core/defines.h"
#ifdef USE_TIME_TIMEZONE
#include "posix_tz.h"
#include <cctype>
namespace esphome::time {
// Global timezone - set once at startup, rarely changes
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables) - intentional mutable state
static ParsedTimezone global_tz_{};
void set_global_tz(const ParsedTimezone &tz) { global_tz_ = tz; }
const ParsedTimezone &get_global_tz() { return global_tz_; }
namespace internal {
// Helper to parse an unsigned integer from string, updating pointer
static uint32_t parse_uint(const char *&p) {
uint32_t value = 0;
while (std::isdigit(static_cast<unsigned char>(*p))) {
value = value * 10 + (*p - '0');
p++;
}
return value;
}
bool is_leap_year(int year) { return (year % 4 == 0 && year % 100 != 0) || (year % 400 == 0); }
// Get days in year (avoids duplicate is_leap_year calls)
static inline int days_in_year(int year) { return is_leap_year(year) ? 366 : 365; }
// Convert days since epoch to year, updating days to remainder
static int __attribute__((noinline)) days_to_year(int64_t &days) {
int year = 1970;
int diy;
while (days >= (diy = days_in_year(year))) {
days -= diy;
year++;
}
while (days < 0) {
year--;
days += days_in_year(year);
}
return year;
}
// Extract just the year from a UTC epoch
static int epoch_to_year(time_t epoch) {
int64_t days = epoch / 86400;
if (epoch < 0 && epoch % 86400 != 0)
days--;
return days_to_year(days);
}
int days_in_month(int year, int month) {
switch (month) {
case 2:
return is_leap_year(year) ? 29 : 28;
case 4:
case 6:
case 9:
case 11:
return 30;
default:
return 31;
}
}
// Zeller-like algorithm for day of week (0 = Sunday)
int __attribute__((noinline)) day_of_week(int year, int month, int day) {
// Adjust for January/February
if (month < 3) {
month += 12;
year--;
}
int k = year % 100;
int j = year / 100;
int h = (day + (13 * (month + 1)) / 5 + k + k / 4 + j / 4 - 2 * j) % 7;
// Convert from Zeller (0=Sat) to standard (0=Sun)
return ((h + 6) % 7);
}
void __attribute__((noinline)) epoch_to_tm_utc(time_t epoch, struct tm *out_tm) {
// Days since epoch
int64_t days = epoch / 86400;
int32_t remaining_secs = epoch % 86400;
if (remaining_secs < 0) {
days--;
remaining_secs += 86400;
}
out_tm->tm_sec = remaining_secs % 60;
remaining_secs /= 60;
out_tm->tm_min = remaining_secs % 60;
out_tm->tm_hour = remaining_secs / 60;
// Day of week (Jan 1, 1970 was Thursday = 4)
out_tm->tm_wday = static_cast<int>((days + 4) % 7);
if (out_tm->tm_wday < 0)
out_tm->tm_wday += 7;
// Calculate year (updates days to day-of-year)
int year = days_to_year(days);
out_tm->tm_year = year - 1900;
out_tm->tm_yday = static_cast<int>(days);
// Calculate month and day
int month = 1;
int dim;
while (days >= (dim = days_in_month(year, month))) {
days -= dim;
month++;
}
out_tm->tm_mon = month - 1;
out_tm->tm_mday = static_cast<int>(days) + 1;
out_tm->tm_isdst = 0;
}
bool skip_tz_name(const char *&p) {
if (*p == '<') {
// Angle-bracket quoted name: <+07>, <-03>, <AEST>
p++; // skip '<'
while (*p && *p != '>') {
p++;
}
if (*p == '>') {
p++; // skip '>'
return true;
}
return false; // Unterminated
}
// Standard name: 3+ letters
const char *start = p;
while (*p && std::isalpha(static_cast<unsigned char>(*p))) {
p++;
}
return (p - start) >= 3;
}
int32_t __attribute__((noinline)) parse_offset(const char *&p) {
int sign = 1;
if (*p == '-') {
sign = -1;
p++;
} else if (*p == '+') {
p++;
}
int hours = parse_uint(p);
int minutes = 0;
int seconds = 0;
if (*p == ':') {
p++;
minutes = parse_uint(p);
if (*p == ':') {
p++;
seconds = parse_uint(p);
}
}
return sign * (hours * 3600 + minutes * 60 + seconds);
}
// Helper to parse the optional /time suffix (reuses parse_offset logic)
static void parse_transition_time(const char *&p, DSTRule &rule) {
rule.time_seconds = 2 * 3600; // Default 02:00
if (*p == '/') {
p++;
rule.time_seconds = parse_offset(p);
}
}
void __attribute__((noinline)) julian_to_month_day(int julian_day, int &out_month, int &out_day) {
// J format: day 1-365, Feb 29 is NOT counted even in leap years
// So day 60 is always March 1
// Iterate forward through months (no array needed)
int remaining = julian_day;
out_month = 1;
while (out_month <= 12) {
// Days in month for non-leap year (J format ignores leap years)
int dim = days_in_month(2001, out_month); // 2001 is non-leap year
if (remaining <= dim) {
out_day = remaining;
return;
}
remaining -= dim;
out_month++;
}
out_day = remaining;
}
void __attribute__((noinline)) day_of_year_to_month_day(int day_of_year, int year, int &out_month, int &out_day) {
// Plain format: day 0-365, Feb 29 IS counted in leap years
// Day 0 = Jan 1
int remaining = day_of_year;
out_month = 1;
while (out_month <= 12) {
int days_this_month = days_in_month(year, out_month);
if (remaining < days_this_month) {
out_day = remaining + 1;
return;
}
remaining -= days_this_month;
out_month++;
}
// Shouldn't reach here with valid input
out_month = 12;
out_day = 31;
}
bool parse_dst_rule(const char *&p, DSTRule &rule) {
rule = {}; // Zero initialize
if (*p == 'M' || *p == 'm') {
// M format: Mm.w.d (month.week.day)
rule.type = DSTRuleType::MONTH_WEEK_DAY;
p++;
rule.month = parse_uint(p);
if (rule.month < 1 || rule.month > 12)
return false;
if (*p++ != '.')
return false;
rule.week = parse_uint(p);
if (rule.week < 1 || rule.week > 5)
return false;
if (*p++ != '.')
return false;
rule.day_of_week = parse_uint(p);
if (rule.day_of_week > 6)
return false;
} else if (*p == 'J' || *p == 'j') {
// J format: Jn (Julian day 1-365, not counting Feb 29)
rule.type = DSTRuleType::JULIAN_NO_LEAP;
p++;
rule.day = parse_uint(p);
if (rule.day < 1 || rule.day > 365)
return false;
} else if (std::isdigit(static_cast<unsigned char>(*p))) {
// Plain number format: n (day 0-365, counting Feb 29)
rule.type = DSTRuleType::DAY_OF_YEAR;
rule.day = parse_uint(p);
if (rule.day > 365)
return false;
} else {
return false;
}
// Parse optional /time suffix
parse_transition_time(p, rule);
return true;
}
// Calculate days from Jan 1 of given year to given month/day
static int __attribute__((noinline)) days_from_year_start(int year, int month, int day) {
int days = day - 1;
for (int m = 1; m < month; m++) {
days += days_in_month(year, m);
}
return days;
}
// Calculate days from epoch to Jan 1 of given year (for DST transition calculations)
// Only supports years >= 1970. Timezone is either compiled in from YAML or set by
// Home Assistant, so pre-1970 dates are not a concern.
static int64_t __attribute__((noinline)) days_to_year_start(int year) {
int64_t days = 0;
for (int y = 1970; y < year; y++) {
days += days_in_year(y);
}
return days;
}
time_t __attribute__((noinline)) calculate_dst_transition(int year, const DSTRule &rule, int32_t base_offset_seconds) {
int month, day;
switch (rule.type) {
case DSTRuleType::MONTH_WEEK_DAY: {
// Find the nth occurrence of day_of_week in the given month
int first_dow = day_of_week(year, rule.month, 1);
// Days until first occurrence of target day
int days_until_first = (rule.day_of_week - first_dow + 7) % 7;
int first_occurrence = 1 + days_until_first;
if (rule.week == 5) {
// "Last" occurrence - find the last one in the month
int dim = days_in_month(year, rule.month);
day = first_occurrence;
while (day + 7 <= dim) {
day += 7;
}
} else {
// nth occurrence
day = first_occurrence + (rule.week - 1) * 7;
}
month = rule.month;
break;
}
case DSTRuleType::JULIAN_NO_LEAP:
// J format: day 1-365, Feb 29 not counted
julian_to_month_day(rule.day, month, day);
break;
case DSTRuleType::DAY_OF_YEAR:
// Plain format: day 0-365, Feb 29 counted
day_of_year_to_month_day(rule.day, year, month, day);
break;
case DSTRuleType::NONE:
// Should never be called with NONE, but handle it gracefully
month = 1;
day = 1;
break;
}
// Calculate days from epoch to this date
int64_t days = days_to_year_start(year) + days_from_year_start(year, month, day);
// Convert to epoch and add transition time and base offset
return days * 86400 + rule.time_seconds + base_offset_seconds;
}
} // namespace internal
bool __attribute__((noinline)) is_in_dst(time_t utc_epoch, const ParsedTimezone &tz) {
if (!tz.has_dst()) {
return false;
}
int year = internal::epoch_to_year(utc_epoch);
// Calculate DST start and end for this year
// DST start transition happens in standard time
time_t dst_start = internal::calculate_dst_transition(year, tz.dst_start, tz.std_offset_seconds);
// DST end transition happens in daylight time
time_t dst_end = internal::calculate_dst_transition(year, tz.dst_end, tz.dst_offset_seconds);
if (dst_start < dst_end) {
// Northern hemisphere: DST is between start and end
return (utc_epoch >= dst_start && utc_epoch < dst_end);
} else {
// Southern hemisphere: DST is outside the range (wraps around year)
return (utc_epoch >= dst_start || utc_epoch < dst_end);
}
}
bool parse_posix_tz(const char *tz_string, ParsedTimezone &result) {
if (!tz_string || !*tz_string) {
return false;
}
const char *p = tz_string;
// Initialize result (dst_start/dst_end default to type=NONE, so has_dst() returns false)
result.std_offset_seconds = 0;
result.dst_offset_seconds = 0;
result.dst_start = {};
result.dst_end = {};
// Skip standard timezone name
if (!internal::skip_tz_name(p)) {
return false;
}
// Parse standard offset (required)
if (!*p || (!std::isdigit(static_cast<unsigned char>(*p)) && *p != '+' && *p != '-')) {
return false;
}
result.std_offset_seconds = internal::parse_offset(p);
// Check for DST name
if (!*p) {
return true; // No DST
}
// If next char is comma, there's no DST name but there are rules (invalid)
if (*p == ',') {
return false;
}
// Check if there's something that looks like a DST name start
// (letter or angle bracket). If not, treat as trailing garbage and return success.
if (!std::isalpha(static_cast<unsigned char>(*p)) && *p != '<') {
return true; // No DST, trailing characters ignored
}
if (!internal::skip_tz_name(p)) {
return false; // Invalid DST name (started but malformed)
}
// Optional DST offset (default is std - 1 hour)
if (*p && *p != ',' && (std::isdigit(static_cast<unsigned char>(*p)) || *p == '+' || *p == '-')) {
result.dst_offset_seconds = internal::parse_offset(p);
} else {
result.dst_offset_seconds = result.std_offset_seconds - 3600;
}
// Parse DST rules (required when DST name is present)
if (*p != ',') {
// DST name without rules - treat as no DST since we can't determine transitions
return true;
}
p++;
if (!internal::parse_dst_rule(p, result.dst_start)) {
return false;
}
// Second rule is required per POSIX
if (*p != ',') {
return false;
}
p++;
// has_dst() now returns true since dst_start.type was set by parse_dst_rule
return internal::parse_dst_rule(p, result.dst_end);
}
bool epoch_to_local_tm(time_t utc_epoch, const ParsedTimezone &tz, struct tm *out_tm) {
if (!out_tm) {
return false;
}
// Determine DST status once (avoids duplicate is_in_dst calculation)
bool in_dst = is_in_dst(utc_epoch, tz);
int32_t offset = in_dst ? tz.dst_offset_seconds : tz.std_offset_seconds;
// Apply offset (POSIX offset is positive west, so subtract to get local)
time_t local_epoch = utc_epoch - offset;
internal::epoch_to_tm_utc(local_epoch, out_tm);
out_tm->tm_isdst = in_dst ? 1 : 0;
return true;
}
} // namespace esphome::time
#ifndef USE_HOST
// Override libc's localtime functions to use our timezone on embedded platforms.
// This allows user lambdas calling ::localtime() to get correct local time
// without needing the TZ environment variable (which pulls in scanf bloat).
// On host, we use the normal TZ mechanism since there's no memory constraint.
// Thread-safe version
extern "C" struct tm *localtime_r(const time_t *timer, struct tm *result) {
if (timer == nullptr || result == nullptr) {
return nullptr;
}
esphome::time::epoch_to_local_tm(*timer, esphome::time::get_global_tz(), result);
return result;
}
// Non-thread-safe version (uses static buffer, standard libc behavior)
extern "C" struct tm *localtime(const time_t *timer) {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
static struct tm localtime_buf;
return localtime_r(timer, &localtime_buf);
}
#endif // !USE_HOST
#endif // USE_TIME_TIMEZONE

View File

@@ -1,132 +0,0 @@
#pragma once
#ifdef USE_TIME_TIMEZONE
#include <cstdint>
#include <ctime>
namespace esphome::time {
/// Type of DST transition rule
enum class DSTRuleType : uint8_t {
NONE = 0, ///< No DST rule (used to indicate no DST)
MONTH_WEEK_DAY, ///< M format: Mm.w.d (e.g., M3.2.0 = 2nd Sunday of March)
JULIAN_NO_LEAP, ///< J format: Jn (day 1-365, Feb 29 not counted)
DAY_OF_YEAR, ///< Plain number: n (day 0-365, Feb 29 counted in leap years)
};
/// Rule for DST transition (packed for 32-bit: 12 bytes)
struct DSTRule {
int32_t time_seconds; ///< Seconds after midnight (default 7200 = 2:00 AM)
uint16_t day; ///< Day of year (for JULIAN_NO_LEAP and DAY_OF_YEAR)
DSTRuleType type; ///< Type of rule
uint8_t month; ///< Month 1-12 (for MONTH_WEEK_DAY)
uint8_t week; ///< Week 1-5, 5 = last (for MONTH_WEEK_DAY)
uint8_t day_of_week; ///< Day 0-6, 0 = Sunday (for MONTH_WEEK_DAY)
};
/// Parsed POSIX timezone information (packed for 32-bit: 32 bytes)
struct ParsedTimezone {
int32_t std_offset_seconds; ///< Standard time offset from UTC in seconds (positive = west)
int32_t dst_offset_seconds; ///< DST offset from UTC in seconds
DSTRule dst_start; ///< When DST starts
DSTRule dst_end; ///< When DST ends
/// Check if this timezone has DST rules
bool has_dst() const { return this->dst_start.type != DSTRuleType::NONE; }
};
/// Parse a POSIX TZ string into a ParsedTimezone struct.
/// Supports formats like:
/// - "EST5" (simple offset, no DST)
/// - "EST5EDT,M3.2.0,M11.1.0" (with DST, M-format rules)
/// - "CST6CDT,M3.2.0/2,M11.1.0/2" (with transition times)
/// - "<+07>-7" (angle-bracket notation for special names)
/// - "IST-5:30" (half-hour offsets)
/// - "EST5EDT,J60,J300" (J-format: Julian day without leap day)
/// - "EST5EDT,60,300" (plain day number: day of year with leap day)
/// @param tz_string The POSIX TZ string to parse
/// @param result Output: the parsed timezone data
/// @return true if parsing succeeded, false on error
bool parse_posix_tz(const char *tz_string, ParsedTimezone &result);
/// Convert a UTC epoch to local time using the parsed timezone.
/// This replaces libc's localtime() to avoid scanf dependency.
/// @param utc_epoch Unix timestamp in UTC
/// @param tz The parsed timezone
/// @param[out] out_tm Output tm struct with local time
/// @return true on success
bool epoch_to_local_tm(time_t utc_epoch, const ParsedTimezone &tz, struct tm *out_tm);
/// Set the global timezone used by epoch_to_local_tm() when called without a timezone.
/// This is called by RealTimeClock::apply_timezone_() to enable ESPTime::from_epoch_local()
/// to work without libc's localtime().
void set_global_tz(const ParsedTimezone &tz);
/// Get the global timezone.
const ParsedTimezone &get_global_tz();
/// Check if a given UTC epoch falls within DST for the parsed timezone.
/// @param utc_epoch Unix timestamp in UTC
/// @param tz The parsed timezone
/// @return true if DST is in effect at the given time
bool is_in_dst(time_t utc_epoch, const ParsedTimezone &tz);
// Internal helper functions exposed for testing
namespace internal {
/// Skip a timezone name (letters or <...> quoted format)
/// @param p Pointer to current position, updated on return
/// @return true if a valid name was found
bool skip_tz_name(const char *&p);
/// Parse an offset in format [-]hh[:mm[:ss]]
/// @param p Pointer to current position, updated on return
/// @return Offset in seconds
int32_t parse_offset(const char *&p);
/// Parse a DST rule in format Mm.w.d[/time], Jn[/time], or n[/time]
/// @param p Pointer to current position, updated on return
/// @param rule Output: the parsed rule
/// @return true if parsing succeeded
bool parse_dst_rule(const char *&p, DSTRule &rule);
/// Convert Julian day (J format, 1-365 not counting Feb 29) to month/day
/// @param julian_day Day number 1-365
/// @param[out] month Output: month 1-12
/// @param[out] day Output: day of month
void julian_to_month_day(int julian_day, int &month, int &day);
/// Convert day of year (plain format, 0-365 counting Feb 29) to month/day
/// @param day_of_year Day number 0-365
/// @param year The year (for leap year calculation)
/// @param[out] month Output: month 1-12
/// @param[out] day Output: day of month
void day_of_year_to_month_day(int day_of_year, int year, int &month, int &day);
/// Calculate day of week for any date (0 = Sunday)
/// Uses a simplified algorithm that works for years 1970-2099
int day_of_week(int year, int month, int day);
/// Get the number of days in a month
int days_in_month(int year, int month);
/// Check if a year is a leap year
bool is_leap_year(int year);
/// Convert epoch to year/month/day/hour/min/sec (UTC)
void epoch_to_tm_utc(time_t epoch, struct tm *out_tm);
/// Calculate the epoch timestamp for a DST transition in a given year.
/// @param year The year (e.g., 2026)
/// @param rule The DST rule (month, week, day_of_week, time)
/// @param base_offset_seconds The timezone offset to apply (std or dst depending on context)
/// @return Unix epoch timestamp of the transition
time_t calculate_dst_transition(int year, const DSTRule &rule, int32_t base_offset_seconds);
} // namespace internal
} // namespace esphome::time
#endif // USE_TIME_TIMEZONE

View File

@@ -14,8 +14,8 @@
#include <sys/time.h>
#endif
#include <cerrno>
#include <cinttypes>
#include <cstdlib>
namespace esphome::time {
@@ -23,33 +23,9 @@ static const char *const TAG = "time";
RealTimeClock::RealTimeClock() = default;
ESPTime __attribute__((noinline)) RealTimeClock::now() {
#ifdef USE_TIME_TIMEZONE
time_t epoch = this->timestamp_now();
struct tm local_tm;
if (epoch_to_local_tm(epoch, get_global_tz(), &local_tm)) {
return ESPTime::from_c_tm(&local_tm, epoch);
}
// Fallback to UTC if parsing failed
return ESPTime::from_epoch_utc(epoch);
#else
return ESPTime::from_epoch_local(this->timestamp_now());
#endif
}
void RealTimeClock::dump_config() {
#ifdef USE_TIME_TIMEZONE
const auto &tz = get_global_tz();
// POSIX offset is positive west, negate for conventional UTC+X display
int std_h = -tz.std_offset_seconds / 3600;
int std_m = (std::abs(tz.std_offset_seconds) % 3600) / 60;
if (tz.has_dst()) {
int dst_h = -tz.dst_offset_seconds / 3600;
int dst_m = (std::abs(tz.dst_offset_seconds) % 3600) / 60;
ESP_LOGCONFIG(TAG, "Timezone: UTC%+d:%02d (DST UTC%+d:%02d)", std_h, std_m, dst_h, dst_m);
} else {
ESP_LOGCONFIG(TAG, "Timezone: UTC%+d:%02d", std_h, std_m);
}
ESP_LOGCONFIG(TAG, "Timezone: '%s'", this->timezone_.c_str());
#endif
auto time = this->now();
ESP_LOGCONFIG(TAG, "Current time: %04d-%02d-%02d %02d:%02d:%02d", time.year, time.month, time.day_of_month, time.hour,
@@ -96,6 +72,11 @@ void RealTimeClock::synchronize_epoch_(uint32_t epoch) {
ret = settimeofday(&timev, nullptr);
}
#ifdef USE_TIME_TIMEZONE
// Move timezone back to local timezone.
this->apply_timezone_();
#endif
if (ret != 0) {
ESP_LOGW(TAG, "setimeofday() failed with code %d", ret);
}
@@ -108,29 +89,9 @@ void RealTimeClock::synchronize_epoch_(uint32_t epoch) {
}
#ifdef USE_TIME_TIMEZONE
void RealTimeClock::apply_timezone_(const char *tz) {
ParsedTimezone parsed{};
// Handle null or empty input - use UTC
if (tz == nullptr || *tz == '\0') {
set_global_tz(parsed);
return;
}
#ifdef USE_HOST
// On host platform, also set TZ environment variable for libc compatibility
setenv("TZ", tz, 1);
void RealTimeClock::apply_timezone_() {
setenv("TZ", this->timezone_.c_str(), 1);
tzset();
#endif
// Parse the POSIX TZ string using our custom parser
if (!parse_posix_tz(tz, parsed)) {
ESP_LOGW(TAG, "Failed to parse timezone: %s", tz);
// parsed stays as default (UTC) on failure
}
// Set global timezone for all time conversions
set_global_tz(parsed);
}
#endif

View File

@@ -6,9 +6,6 @@
#include "esphome/core/component.h"
#include "esphome/core/helpers.h"
#include "esphome/core/time.h"
#ifdef USE_TIME_TIMEZONE
#include "posix_tz.h"
#endif
namespace esphome::time {
@@ -23,31 +20,26 @@ class RealTimeClock : public PollingComponent {
explicit RealTimeClock();
#ifdef USE_TIME_TIMEZONE
/// Set the time zone from a POSIX TZ string.
void set_timezone(const char *tz) { this->apply_timezone_(tz); }
/// Set the time zone from a character buffer with known length.
/// The buffer does not need to be null-terminated.
void set_timezone(const char *tz, size_t len) {
if (tz == nullptr) {
this->apply_timezone_(nullptr);
return;
}
// Stack buffer - TZ strings from tzdata are typically short (< 50 chars)
char buf[128];
if (len >= sizeof(buf))
len = sizeof(buf) - 1;
memcpy(buf, tz, len);
buf[len] = '\0';
this->apply_timezone_(buf);
/// Set the time zone.
void set_timezone(const std::string &tz) {
this->timezone_ = tz;
this->apply_timezone_();
}
/// Set the time zone from a std::string.
void set_timezone(const std::string &tz) { this->apply_timezone_(tz.c_str()); }
/// Set the time zone from raw buffer, only if it differs from the current one.
void set_timezone(const char *tz, size_t len) {
if (this->timezone_.length() != len || memcmp(this->timezone_.c_str(), tz, len) != 0) {
this->timezone_.assign(tz, len);
this->apply_timezone_();
}
}
/// Get the time zone currently in use.
std::string get_timezone() { return this->timezone_; }
#endif
/// Get the time in the currently defined timezone.
ESPTime now();
ESPTime now() { return ESPTime::from_epoch_local(this->timestamp_now()); }
/// Get the time without any time zone or DST corrections.
ESPTime utcnow() { return ESPTime::from_epoch_utc(this->timestamp_now()); }
@@ -66,7 +58,8 @@ class RealTimeClock : public PollingComponent {
void synchronize_epoch_(uint32_t epoch);
#ifdef USE_TIME_TIMEZONE
void apply_timezone_(const char *tz);
std::string timezone_{};
void apply_timezone_();
#endif
LazyCallbackManager<void()> time_sync_callback_;

View File

@@ -90,7 +90,6 @@ void IDFUARTComponent::setup() {
return;
}
this->uart_num_ = static_cast<uart_port_t>(next_uart_num++);
this->lock_ = xSemaphoreCreateMutex();
#if (SOC_UART_LP_NUM >= 1)
size_t fifo_len = ((this->uart_num_ < SOC_UART_HP_NUM) ? SOC_UART_FIFO_LEN : SOC_LP_UART_FIFO_LEN);
@@ -102,11 +101,7 @@ void IDFUARTComponent::setup() {
this->rx_buffer_size_ = fifo_len * 2;
}
xSemaphoreTake(this->lock_, portMAX_DELAY);
this->load_settings(false);
xSemaphoreGive(this->lock_);
}
void IDFUARTComponent::load_settings(bool dump_config) {
@@ -126,13 +121,20 @@ void IDFUARTComponent::load_settings(bool dump_config) {
return;
}
}
#ifdef USE_UART_WAKE_LOOP_ON_RX
constexpr int event_queue_size = 20;
QueueHandle_t *event_queue_ptr = &this->uart_event_queue_;
#else
constexpr int event_queue_size = 0;
QueueHandle_t *event_queue_ptr = nullptr;
#endif
err = uart_driver_install(this->uart_num_, // UART number
this->rx_buffer_size_, // RX ring buffer size
0, // TX ring buffer size. If zero, driver will not use a TX buffer and TX function will
// block task until all data has been sent out
20, // event queue size/depth
&this->uart_event_queue_, // event queue
0 // Flags used to allocate the interrupt
0, // TX ring buffer size. If zero, driver will not use a TX buffer and TX function will
// block task until all data has been sent out
event_queue_size, // event queue size/depth
event_queue_ptr, // event queue
0 // Flags used to allocate the interrupt
);
if (err != ESP_OK) {
ESP_LOGW(TAG, "uart_driver_install failed: %s", esp_err_to_name(err));
@@ -282,9 +284,7 @@ void IDFUARTComponent::set_rx_timeout(size_t rx_timeout) {
}
void IDFUARTComponent::write_array(const uint8_t *data, size_t len) {
xSemaphoreTake(this->lock_, portMAX_DELAY);
int32_t write_len = uart_write_bytes(this->uart_num_, data, len);
xSemaphoreGive(this->lock_);
if (write_len != (int32_t) len) {
ESP_LOGW(TAG, "uart_write_bytes failed: %d != %zu", write_len, len);
this->mark_failed();
@@ -299,7 +299,6 @@ void IDFUARTComponent::write_array(const uint8_t *data, size_t len) {
bool IDFUARTComponent::peek_byte(uint8_t *data) {
if (!this->check_read_timeout_())
return false;
xSemaphoreTake(this->lock_, portMAX_DELAY);
if (this->has_peek_) {
*data = this->peek_byte_;
} else {
@@ -311,7 +310,6 @@ bool IDFUARTComponent::peek_byte(uint8_t *data) {
this->peek_byte_ = *data;
}
}
xSemaphoreGive(this->lock_);
return true;
}
@@ -320,7 +318,6 @@ bool IDFUARTComponent::read_array(uint8_t *data, size_t len) {
int32_t read_len = 0;
if (!this->check_read_timeout_(len))
return false;
xSemaphoreTake(this->lock_, portMAX_DELAY);
if (this->has_peek_) {
length_to_read--;
*data = this->peek_byte_;
@@ -329,7 +326,6 @@ bool IDFUARTComponent::read_array(uint8_t *data, size_t len) {
}
if (length_to_read > 0)
read_len = uart_read_bytes(this->uart_num_, data, length_to_read, 20 / portTICK_PERIOD_MS);
xSemaphoreGive(this->lock_);
#ifdef USE_UART_DEBUGGER
for (size_t i = 0; i < len; i++) {
this->debug_callback_.call(UART_DIRECTION_RX, data[i]);
@@ -342,9 +338,7 @@ size_t IDFUARTComponent::available() {
size_t available = 0;
esp_err_t err;
xSemaphoreTake(this->lock_, portMAX_DELAY);
err = uart_get_buffered_data_len(this->uart_num_, &available);
xSemaphoreGive(this->lock_);
if (err != ESP_OK) {
ESP_LOGW(TAG, "uart_get_buffered_data_len failed: %s", esp_err_to_name(err));
@@ -358,9 +352,7 @@ size_t IDFUARTComponent::available() {
void IDFUARTComponent::flush() {
ESP_LOGVV(TAG, " Flushing");
xSemaphoreTake(this->lock_, portMAX_DELAY);
uart_wait_tx_done(this->uart_num_, portMAX_DELAY);
xSemaphoreGive(this->lock_);
}
void IDFUARTComponent::check_logger_conflict() {}
@@ -384,6 +376,13 @@ void IDFUARTComponent::start_rx_event_task_() {
ESP_LOGV(TAG, "RX event task started");
}
// FreeRTOS task that relays UART ISR events to the main loop.
// This task exists because wake_loop_threadsafe() is not ISR-safe (it uses a
// UDP loopback socket), so we need a task as an ISR-to-main-loop trampoline.
// IMPORTANT: This task must NOT call any UART wrapper methods (read_array,
// write_array, peek_byte, etc.) or touch has_peek_/peek_byte_ — all reading
// is done by the main loop. This task only reads from the event queue and
// calls App.wake_loop_threadsafe().
void IDFUARTComponent::rx_event_task_func(void *param) {
auto *self = static_cast<IDFUARTComponent *>(param);
uart_event_t event;
@@ -405,8 +404,14 @@ void IDFUARTComponent::rx_event_task_func(void *param) {
case UART_FIFO_OVF:
case UART_BUFFER_FULL:
ESP_LOGW(TAG, "FIFO overflow or ring buffer full - clearing");
uart_flush_input(self->uart_num_);
// Don't call uart_flush_input() here — this task does not own the read side.
// ESP-IDF examples flush on overflow because the same task handles both events
// and reads, so flush and read are serialized. Here, reads happen on the main
// loop, so flushing from this task races with read_array() and can destroy data
// mid-read. The driver self-heals without an explicit flush: uart_read_bytes()
// calls uart_check_buf_full() after each chunk, which moves stashed FIFO bytes
// into the ring buffer and re-enables RX interrupts once space is freed.
ESP_LOGW(TAG, "FIFO overflow or ring buffer full");
#if defined(USE_SOCKET_SELECT_SUPPORT) && defined(USE_WAKE_LOOP_THREADSAFE)
App.wake_loop_threadsafe();
#endif

View File

@@ -8,6 +8,13 @@
namespace esphome::uart {
/// ESP-IDF UART driver wrapper.
///
/// Thread safety: All public methods must only be called from the main loop.
/// The ESP-IDF UART driver API does not guarantee thread safety, and ESPHome's
/// peek byte state (has_peek_/peek_byte_) is not synchronized. The rx_event_task
/// (when enabled) must not call any of these methods — it communicates with the
/// main loop exclusively via App.wake_loop_threadsafe().
class IDFUARTComponent : public UARTComponent, public Component {
public:
void setup() override;
@@ -26,7 +33,9 @@ class IDFUARTComponent : public UARTComponent, public Component {
void flush() override;
uint8_t get_hw_serial_number() { return this->uart_num_; }
#ifdef USE_UART_WAKE_LOOP_ON_RX
QueueHandle_t *get_uart_event_queue() { return &this->uart_event_queue_; }
#endif
/**
* Load the UART with the current settings.
@@ -46,18 +55,20 @@ class IDFUARTComponent : public UARTComponent, public Component {
protected:
void check_logger_conflict() override;
uart_port_t uart_num_;
QueueHandle_t uart_event_queue_;
uart_config_t get_config_();
SemaphoreHandle_t lock_;
bool has_peek_{false};
uint8_t peek_byte_;
#ifdef USE_UART_WAKE_LOOP_ON_RX
// RX notification support
// RX notification support — runs on a separate FreeRTOS task.
// IMPORTANT: rx_event_task_func must NOT call any UART wrapper methods (read_array,
// write_array, etc.) or touch has_peek_/peek_byte_. It must only read from the
// event queue and call App.wake_loop_threadsafe().
void start_rx_event_task_();
static void rx_event_task_func(void *param);
QueueHandle_t uart_event_queue_;
TaskHandle_t rx_event_task_handle_{nullptr};
#endif // USE_UART_WAKE_LOOP_ON_RX
};

View File

@@ -148,6 +148,7 @@ class USBClient : public Component {
EventPool<UsbEvent, USB_EVENT_QUEUE_SIZE> event_pool;
protected:
void handle_open_state_();
TransferRequest *get_trq_(); // Lock-free allocation using atomic bitmask (multi-consumer safe)
virtual void disconnect();
virtual void on_connected() {}

View File

@@ -9,6 +9,7 @@
#include <cinttypes>
#include <cstring>
#include <atomic>
#include <span>
namespace esphome {
namespace usb_host {
@@ -142,18 +143,23 @@ static void usb_client_print_config_descriptor(const usb_config_desc_t *cfg_desc
} while (next_desc != NULL);
}
#endif
static std::string get_descriptor_string(const usb_str_desc_t *desc) {
char buffer[256];
if (desc == nullptr)
// USB string descriptors: bLength (uint8_t, max 255) includes the 2-byte header (bLength and bDescriptorType).
// Character count = (bLength - 2) / 2, max 126 chars + null terminator.
static constexpr size_t DESC_STRING_BUF_SIZE = 128;
static const char *get_descriptor_string(const usb_str_desc_t *desc, std::span<char, DESC_STRING_BUF_SIZE> buffer) {
if (desc == nullptr || desc->bLength < 2)
return "(unspecified)";
char *p = buffer;
for (int i = 0; i != desc->bLength / 2; i++) {
int char_count = (desc->bLength - 2) / 2;
char *p = buffer.data();
char *end = p + buffer.size() - 1;
for (int i = 0; i != char_count && p < end; i++) {
auto c = desc->wData[i];
if (c < 0x100)
*p++ = static_cast<char>(c);
}
*p = '\0';
return {buffer};
return buffer.data();
}
// CALLBACK CONTEXT: USB task (called from usb_host_client_handle_events in USB task)
@@ -259,60 +265,63 @@ void USBClient::loop() {
ESP_LOGW(TAG, "Dropped %u USB events due to queue overflow", dropped);
}
switch (this->state_) {
case USB_CLIENT_OPEN: {
int err;
ESP_LOGD(TAG, "Open device %d", this->device_addr_);
err = usb_host_device_open(this->handle_, this->device_addr_, &this->device_handle_);
if (err != ESP_OK) {
ESP_LOGW(TAG, "Device open failed: %s", esp_err_to_name(err));
this->state_ = USB_CLIENT_INIT;
break;
}
ESP_LOGD(TAG, "Get descriptor device %d", this->device_addr_);
const usb_device_desc_t *desc;
err = usb_host_get_device_descriptor(this->device_handle_, &desc);
if (err != ESP_OK) {
ESP_LOGW(TAG, "Device get_desc failed: %s", esp_err_to_name(err));
this->disconnect();
} else {
ESP_LOGD(TAG, "Device descriptor: vid %X pid %X", desc->idVendor, desc->idProduct);
if (desc->idVendor == this->vid_ && desc->idProduct == this->pid_ || this->vid_ == 0 && this->pid_ == 0) {
usb_device_info_t dev_info;
err = usb_host_device_info(this->device_handle_, &dev_info);
if (err != ESP_OK) {
ESP_LOGW(TAG, "Device info failed: %s", esp_err_to_name(err));
this->disconnect();
break;
}
this->state_ = USB_CLIENT_CONNECTED;
ESP_LOGD(TAG, "Device connected: Manuf: %s; Prod: %s; Serial: %s",
get_descriptor_string(dev_info.str_desc_manufacturer).c_str(),
get_descriptor_string(dev_info.str_desc_product).c_str(),
get_descriptor_string(dev_info.str_desc_serial_num).c_str());
if (this->state_ == USB_CLIENT_OPEN) {
this->handle_open_state_();
}
}
void USBClient::handle_open_state_() {
int err;
ESP_LOGD(TAG, "Open device %d", this->device_addr_);
err = usb_host_device_open(this->handle_, this->device_addr_, &this->device_handle_);
if (err != ESP_OK) {
ESP_LOGW(TAG, "Device open failed: %s", esp_err_to_name(err));
this->state_ = USB_CLIENT_INIT;
return;
}
ESP_LOGD(TAG, "Get descriptor device %d", this->device_addr_);
const usb_device_desc_t *desc;
err = usb_host_get_device_descriptor(this->device_handle_, &desc);
if (err != ESP_OK) {
ESP_LOGW(TAG, "Device get_desc failed: %s", esp_err_to_name(err));
this->disconnect();
return;
}
ESP_LOGD(TAG, "Device descriptor: vid %X pid %X", desc->idVendor, desc->idProduct);
if (desc->idVendor != this->vid_ || desc->idProduct != this->pid_) {
if (this->vid_ != 0 || this->pid_ != 0) {
ESP_LOGD(TAG, "Not our device, closing");
this->disconnect();
return;
}
}
usb_device_info_t dev_info;
err = usb_host_device_info(this->device_handle_, &dev_info);
if (err != ESP_OK) {
ESP_LOGW(TAG, "Device info failed: %s", esp_err_to_name(err));
this->disconnect();
return;
}
this->state_ = USB_CLIENT_CONNECTED;
char buf_manuf[DESC_STRING_BUF_SIZE];
char buf_product[DESC_STRING_BUF_SIZE];
char buf_serial[DESC_STRING_BUF_SIZE];
ESP_LOGD(TAG, "Device connected: Manuf: %s; Prod: %s; Serial: %s",
get_descriptor_string(dev_info.str_desc_manufacturer, buf_manuf),
get_descriptor_string(dev_info.str_desc_product, buf_product),
get_descriptor_string(dev_info.str_desc_serial_num, buf_serial));
#if ESPHOME_LOG_LEVEL >= ESPHOME_LOG_LEVEL_VERBOSE
const usb_device_desc_t *device_desc;
err = usb_host_get_device_descriptor(this->device_handle_, &device_desc);
if (err == ESP_OK)
usb_client_print_device_descriptor(device_desc);
const usb_config_desc_t *config_desc;
err = usb_host_get_active_config_descriptor(this->device_handle_, &config_desc);
if (err == ESP_OK)
usb_client_print_config_descriptor(config_desc, nullptr);
const usb_device_desc_t *device_desc;
err = usb_host_get_device_descriptor(this->device_handle_, &device_desc);
if (err == ESP_OK)
usb_client_print_device_descriptor(device_desc);
const usb_config_desc_t *config_desc;
err = usb_host_get_active_config_descriptor(this->device_handle_, &config_desc);
if (err == ESP_OK)
usb_client_print_config_descriptor(config_desc, nullptr);
#endif
this->on_connected();
} else {
ESP_LOGD(TAG, "Not our device, closing");
this->disconnect();
}
}
break;
}
default:
break;
}
this->on_connected();
}
void USBClient::on_opened(uint8_t addr) {

View File

@@ -198,7 +198,8 @@ EntityMatchResult UrlMatch::match_entity(EntityBase *entity) const {
#if !defined(USE_ESP32) && defined(USE_ARDUINO)
// helper for allowing only unique entries in the queue
void DeferredUpdateEventSource::deq_push_back_with_dedup_(void *source, message_generator_t *message_generator) {
void __attribute__((flatten))
DeferredUpdateEventSource::deq_push_back_with_dedup_(void *source, message_generator_t *message_generator) {
DeferredEvent item(source, message_generator);
// Use range-based for loop instead of std::find_if to reduce template instantiation overhead and binary size
@@ -557,7 +558,9 @@ static void set_json_id(JsonObject &root, EntityBase *obj, const char *prefix, J
root[ESPHOME_F("device")] = device_name;
}
#endif
#ifdef USE_ENTITY_ICON
root[ESPHOME_F("icon")] = obj->get_icon_ref();
#endif
root[ESPHOME_F("entity_category")] = obj->get_entity_category();
bool is_disabled = obj->is_disabled_by_default();
if (is_disabled)
@@ -583,8 +586,7 @@ static void set_json_icon_state_value(JsonObject &root, EntityBase *obj, const c
// Helper to get request detail parameter
static JsonDetail get_request_detail(AsyncWebServerRequest *request) {
auto *param = request->getParam(ESPHOME_F("detail"));
return (param && param->value() == "all") ? DETAIL_ALL : DETAIL_STATE;
return request->arg(ESPHOME_F("detail")) == "all" ? DETAIL_ALL : DETAIL_STATE;
}
#ifdef USE_SENSOR
@@ -861,10 +863,10 @@ void WebServer::handle_fan_request(AsyncWebServerRequest *request, const UrlMatc
}
auto call = is_on ? obj->turn_on() : obj->turn_off();
parse_int_param_(request, ESPHOME_F("speed_level"), call, &decltype(call)::set_speed);
parse_num_param_(request, ESPHOME_F("speed_level"), call, &decltype(call)::set_speed);
if (request->hasParam(ESPHOME_F("oscillation"))) {
auto speed = request->getParam(ESPHOME_F("oscillation"))->value();
if (request->hasArg(ESPHOME_F("oscillation"))) {
auto speed = request->arg(ESPHOME_F("oscillation"));
auto val = parse_on_off(speed.c_str());
switch (val) {
case PARSE_ON:
@@ -1040,14 +1042,14 @@ void WebServer::handle_cover_request(AsyncWebServerRequest *request, const UrlMa
}
auto traits = obj->get_traits();
if ((request->hasParam(ESPHOME_F("position")) && !traits.get_supports_position()) ||
(request->hasParam(ESPHOME_F("tilt")) && !traits.get_supports_tilt())) {
if ((request->hasArg(ESPHOME_F("position")) && !traits.get_supports_position()) ||
(request->hasArg(ESPHOME_F("tilt")) && !traits.get_supports_tilt())) {
request->send(409);
return;
}
parse_float_param_(request, ESPHOME_F("position"), call, &decltype(call)::set_position);
parse_float_param_(request, ESPHOME_F("tilt"), call, &decltype(call)::set_tilt);
parse_num_param_(request, ESPHOME_F("position"), call, &decltype(call)::set_position);
parse_num_param_(request, ESPHOME_F("tilt"), call, &decltype(call)::set_tilt);
DEFER_ACTION(call, call.perform());
request->send(200);
@@ -1106,7 +1108,7 @@ void WebServer::handle_number_request(AsyncWebServerRequest *request, const UrlM
}
auto call = obj->make_call();
parse_float_param_(request, ESPHOME_F("value"), call, &decltype(call)::set_value);
parse_num_param_(request, ESPHOME_F("value"), call, &decltype(call)::set_value);
DEFER_ACTION(call, call.perform());
request->send(200);
@@ -1174,12 +1176,13 @@ void WebServer::handle_date_request(AsyncWebServerRequest *request, const UrlMat
auto call = obj->make_call();
if (!request->hasParam(ESPHOME_F("value"))) {
const auto &value = request->arg(ESPHOME_F("value"));
// Arduino String has isEmpty() not empty(), use length() for cross-platform compatibility
if (value.length() == 0) { // NOLINT(readability-container-size-empty)
request->send(409);
return;
}
parse_string_param_(request, ESPHOME_F("value"), call, &decltype(call)::set_date);
call.set_date(value.c_str(), value.length());
DEFER_ACTION(call, call.perform());
request->send(200);
@@ -1234,12 +1237,13 @@ void WebServer::handle_time_request(AsyncWebServerRequest *request, const UrlMat
auto call = obj->make_call();
if (!request->hasParam(ESPHOME_F("value"))) {
const auto &value = request->arg(ESPHOME_F("value"));
// Arduino String has isEmpty() not empty(), use length() for cross-platform compatibility
if (value.length() == 0) { // NOLINT(readability-container-size-empty)
request->send(409);
return;
}
parse_string_param_(request, ESPHOME_F("value"), call, &decltype(call)::set_time);
call.set_time(value.c_str(), value.length());
DEFER_ACTION(call, call.perform());
request->send(200);
@@ -1293,12 +1297,13 @@ void WebServer::handle_datetime_request(AsyncWebServerRequest *request, const Ur
auto call = obj->make_call();
if (!request->hasParam(ESPHOME_F("value"))) {
const auto &value = request->arg(ESPHOME_F("value"));
// Arduino String has isEmpty() not empty(), use length() for cross-platform compatibility
if (value.length() == 0) { // NOLINT(readability-container-size-empty)
request->send(409);
return;
}
parse_string_param_(request, ESPHOME_F("value"), call, &decltype(call)::set_datetime);
call.set_datetime(value.c_str(), value.length());
DEFER_ACTION(call, call.perform());
request->send(200);
@@ -1477,10 +1482,14 @@ void WebServer::handle_climate_request(AsyncWebServerRequest *request, const Url
parse_string_param_(request, ESPHOME_F("swing_mode"), call, &decltype(call)::set_swing_mode);
// Parse temperature parameters
parse_float_param_(request, ESPHOME_F("target_temperature_high"), call,
&decltype(call)::set_target_temperature_high);
parse_float_param_(request, ESPHOME_F("target_temperature_low"), call, &decltype(call)::set_target_temperature_low);
parse_float_param_(request, ESPHOME_F("target_temperature"), call, &decltype(call)::set_target_temperature);
// static_cast needed to disambiguate overloaded setters (float vs optional<float>)
using ClimateCall = decltype(call);
parse_num_param_(request, ESPHOME_F("target_temperature_high"), call,
static_cast<ClimateCall &(ClimateCall::*) (float)>(&ClimateCall::set_target_temperature_high));
parse_num_param_(request, ESPHOME_F("target_temperature_low"), call,
static_cast<ClimateCall &(ClimateCall::*) (float)>(&ClimateCall::set_target_temperature_low));
parse_num_param_(request, ESPHOME_F("target_temperature"), call,
static_cast<ClimateCall &(ClimateCall::*) (float)>(&ClimateCall::set_target_temperature));
DEFER_ACTION(call, call.perform());
request->send(200);
@@ -1721,12 +1730,12 @@ void WebServer::handle_valve_request(AsyncWebServerRequest *request, const UrlMa
}
auto traits = obj->get_traits();
if (request->hasParam(ESPHOME_F("position")) && !traits.get_supports_position()) {
if (request->hasArg(ESPHOME_F("position")) && !traits.get_supports_position()) {
request->send(409);
return;
}
parse_float_param_(request, ESPHOME_F("position"), call, &decltype(call)::set_position);
parse_num_param_(request, ESPHOME_F("position"), call, &decltype(call)::set_position);
DEFER_ACTION(call, call.perform());
request->send(200);
@@ -1870,12 +1879,12 @@ void WebServer::handle_water_heater_request(AsyncWebServerRequest *request, cons
parse_string_param_(request, ESPHOME_F("mode"), base_call, &water_heater::WaterHeaterCall::set_mode);
// Parse temperature parameters
parse_float_param_(request, ESPHOME_F("target_temperature"), base_call,
&water_heater::WaterHeaterCall::set_target_temperature);
parse_float_param_(request, ESPHOME_F("target_temperature_low"), base_call,
&water_heater::WaterHeaterCall::set_target_temperature_low);
parse_float_param_(request, ESPHOME_F("target_temperature_high"), base_call,
&water_heater::WaterHeaterCall::set_target_temperature_high);
parse_num_param_(request, ESPHOME_F("target_temperature"), base_call,
&water_heater::WaterHeaterCall::set_target_temperature);
parse_num_param_(request, ESPHOME_F("target_temperature_low"), base_call,
&water_heater::WaterHeaterCall::set_target_temperature_low);
parse_num_param_(request, ESPHOME_F("target_temperature_high"), base_call,
&water_heater::WaterHeaterCall::set_target_temperature_high);
// Parse away mode parameter
parse_bool_param_(request, ESPHOME_F("away"), base_call, &water_heater::WaterHeaterCall::set_away);
@@ -1979,16 +1988,16 @@ void WebServer::handle_infrared_request(AsyncWebServerRequest *request, const Ur
auto call = obj->make_call();
// Parse carrier frequency (optional)
if (request->hasParam(ESPHOME_F("carrier_frequency"))) {
auto value = parse_number<uint32_t>(request->getParam(ESPHOME_F("carrier_frequency"))->value().c_str());
{
auto value = parse_number<uint32_t>(request->arg(ESPHOME_F("carrier_frequency")).c_str());
if (value.has_value()) {
call.set_carrier_frequency(*value);
}
}
// Parse repeat count (optional, defaults to 1)
if (request->hasParam(ESPHOME_F("repeat_count"))) {
auto value = parse_number<uint32_t>(request->getParam(ESPHOME_F("repeat_count"))->value().c_str());
{
auto value = parse_number<uint32_t>(request->arg(ESPHOME_F("repeat_count")).c_str());
if (value.has_value()) {
call.set_repeat_count(*value);
}
@@ -1996,18 +2005,12 @@ void WebServer::handle_infrared_request(AsyncWebServerRequest *request, const Ur
// Parse base64url-encoded raw timings (required)
// Base64url is URL-safe: uses A-Za-z0-9-_ (no special characters needing escaping)
if (!request->hasParam(ESPHOME_F("data"))) {
request->send(400, ESPHOME_F("text/plain"), ESPHOME_F("Missing 'data' parameter"));
return;
}
const auto &data_arg = request->arg(ESPHOME_F("data"));
// .c_str() is required for Arduino framework where value() returns Arduino String instead of std::string
std::string encoded =
request->getParam(ESPHOME_F("data"))->value().c_str(); // NOLINT(readability-redundant-string-cstr)
// Validate base64url is not empty
if (encoded.empty()) {
request->send(400, ESPHOME_F("text/plain"), ESPHOME_F("Empty 'data' parameter"));
// Validate base64url is not empty (also catches missing parameter since arg() returns empty string)
// Arduino String has isEmpty() not empty(), use length() for cross-platform compatibility
if (data_arg.length() == 0) { // NOLINT(readability-container-size-empty)
request->send(400, ESPHOME_F("text/plain"), ESPHOME_F("Missing or empty 'data' parameter"));
return;
}
@@ -2015,7 +2018,7 @@ void WebServer::handle_infrared_request(AsyncWebServerRequest *request, const Ur
// it outlives the call - set_raw_timings_base64url stores a pointer, so the string
// must remain valid until perform() completes.
// ESP8266 also needs this because ESPAsyncWebServer callbacks run in "sys" context.
this->defer([call, encoded = std::move(encoded)]() mutable {
this->defer([call, encoded = std::string(data_arg.c_str(), data_arg.length())]() mutable {
call.set_raw_timings_base64url(encoded);
call.perform();
});

View File

@@ -513,11 +513,9 @@ class WebServer : public Controller,
template<typename T, typename Ret>
void parse_light_param_(AsyncWebServerRequest *request, ParamNameType param_name, T &call, Ret (T::*setter)(float),
float scale = 1.0f) {
if (request->hasParam(param_name)) {
auto value = parse_number<float>(request->getParam(param_name)->value().c_str());
if (value.has_value()) {
(call.*setter)(*value / scale);
}
auto value = parse_number<float>(request->arg(param_name).c_str());
if (value.has_value()) {
(call.*setter)(*value / scale);
}
}
@@ -525,34 +523,19 @@ class WebServer : public Controller,
template<typename T, typename Ret>
void parse_light_param_uint_(AsyncWebServerRequest *request, ParamNameType param_name, T &call,
Ret (T::*setter)(uint32_t), uint32_t scale = 1) {
if (request->hasParam(param_name)) {
auto value = parse_number<uint32_t>(request->getParam(param_name)->value().c_str());
if (value.has_value()) {
(call.*setter)(*value * scale);
}
auto value = parse_number<uint32_t>(request->arg(param_name).c_str());
if (value.has_value()) {
(call.*setter)(*value * scale);
}
}
#endif
// Generic helper to parse and apply a float parameter
template<typename T, typename Ret>
void parse_float_param_(AsyncWebServerRequest *request, ParamNameType param_name, T &call, Ret (T::*setter)(float)) {
if (request->hasParam(param_name)) {
auto value = parse_number<float>(request->getParam(param_name)->value().c_str());
if (value.has_value()) {
(call.*setter)(*value);
}
}
}
// Generic helper to parse and apply an int parameter
template<typename T, typename Ret>
void parse_int_param_(AsyncWebServerRequest *request, ParamNameType param_name, T &call, Ret (T::*setter)(int)) {
if (request->hasParam(param_name)) {
auto value = parse_number<int>(request->getParam(param_name)->value().c_str());
if (value.has_value()) {
(call.*setter)(*value);
}
// Generic helper to parse and apply a numeric parameter
template<typename NumT, typename T, typename Ret>
void parse_num_param_(AsyncWebServerRequest *request, ParamNameType param_name, T &call, Ret (T::*setter)(NumT)) {
auto value = parse_number<NumT>(request->arg(param_name).c_str());
if (value.has_value()) {
(call.*setter)(*value);
}
}
@@ -560,10 +543,9 @@ class WebServer : public Controller,
template<typename T, typename Ret>
void parse_string_param_(AsyncWebServerRequest *request, ParamNameType param_name, T &call,
Ret (T::*setter)(const std::string &)) {
if (request->hasParam(param_name)) {
// .c_str() is required for Arduino framework where value() returns Arduino String instead of std::string
std::string value = request->getParam(param_name)->value().c_str(); // NOLINT(readability-redundant-string-cstr)
(call.*setter)(value);
if (request->hasArg(param_name)) {
const auto &value = request->arg(param_name);
(call.*setter)(std::string(value.c_str(), value.length()));
}
}
@@ -573,8 +555,9 @@ class WebServer : public Controller,
// Invalid values are ignored (setter not called)
template<typename T, typename Ret>
void parse_bool_param_(AsyncWebServerRequest *request, ParamNameType param_name, T &call, Ret (T::*setter)(bool)) {
if (request->hasParam(param_name)) {
auto param_value = request->getParam(param_name)->value();
const auto &param_value = request->arg(param_name);
// Arduino String has isEmpty() not empty(), use length() for cross-platform compatibility
if (param_value.length() > 0) { // NOLINT(readability-container-size-empty)
// First check on/off (default), then true/false (custom)
auto val = parse_on_off(param_value.c_str());
if (val == PARSE_NONE) {

View File

@@ -1,17 +1,13 @@
#ifdef USE_ESP32
#include <memory>
#include <cstring>
#include <cctype>
#include "esphome/core/helpers.h"
#include "esphome/core/log.h"
#include "http_parser.h"
#include "utils.h"
namespace esphome::web_server_idf {
static const char *const TAG = "web_server_idf_utils";
size_t url_decode(char *str) {
char *start = str;
char *ptr = str, buf;
@@ -54,32 +50,15 @@ optional<std::string> request_get_header(httpd_req_t *req, const char *name) {
return {str};
}
optional<std::string> request_get_url_query(httpd_req_t *req) {
auto len = httpd_req_get_url_query_len(req);
if (len == 0) {
return {};
}
std::string str;
str.resize(len);
auto res = httpd_req_get_url_query_str(req, &str[0], len + 1);
if (res != ESP_OK) {
ESP_LOGW(TAG, "Can't get query for request: %s", esp_err_to_name(res));
return {};
}
return {str};
}
optional<std::string> query_key_value(const char *query_url, size_t query_len, const char *key) {
if (query_url == nullptr || query_len == 0) {
return {};
}
// Use stack buffer for typical query strings, heap fallback for large ones
SmallBufferWithHeapFallback<256, char> val(query_len);
// Value can't exceed query_len. Use small stack buffer for typical values,
// heap fallback for long ones (e.g. base64 IR data) to limit stack usage
// since callers may also have stack buffers for the query string.
SmallBufferWithHeapFallback<128, char> val(query_len);
if (httpd_query_key_value(query_url, key, val.get(), query_len) != ESP_OK) {
return {};
}
@@ -88,6 +67,18 @@ optional<std::string> query_key_value(const char *query_url, size_t query_len, c
return {val.get()};
}
bool query_has_key(const char *query_url, size_t query_len, const char *key) {
if (query_url == nullptr || query_len == 0) {
return false;
}
// Minimal buffer — we only care if the key exists, not the value
char buf[1];
// httpd_query_key_value returns ESP_OK if found, ESP_ERR_HTTPD_RESULT_TRUNC if found
// but value truncated (expected with 1-byte buffer), or other errors for invalid input
auto err = httpd_query_key_value(query_url, key, buf, sizeof(buf));
return err == ESP_OK || err == ESP_ERR_HTTPD_RESULT_TRUNC;
}
// Helper function for case-insensitive string region comparison
bool str_ncmp_ci(const char *s1, const char *s2, size_t n) {
for (size_t i = 0; i < n; i++) {

View File

@@ -13,11 +13,8 @@ size_t url_decode(char *str);
bool request_has_header(httpd_req_t *req, const char *name);
optional<std::string> request_get_header(httpd_req_t *req, const char *name);
optional<std::string> request_get_url_query(httpd_req_t *req);
optional<std::string> query_key_value(const char *query_url, size_t query_len, const char *key);
inline optional<std::string> query_key_value(const std::string &query_url, const std::string &key) {
return query_key_value(query_url.c_str(), query_url.size(), key.c_str());
}
bool query_has_key(const char *query_url, size_t query_len, const char *key);
// Helper function for case-insensitive character comparison
inline bool char_equals_ci(char a, char b) { return ::tolower(a) == ::tolower(b); }

View File

@@ -393,13 +393,7 @@ AsyncWebParameter *AsyncWebServerRequest::getParam(const char *name) {
}
// Look up value from query strings
optional<std::string> val = query_key_value(this->post_query_.c_str(), this->post_query_.size(), name);
if (!val.has_value()) {
auto url_query = request_get_url_query(*this);
if (url_query.has_value()) {
val = query_key_value(url_query.value().c_str(), url_query.value().size(), name);
}
}
auto val = this->find_query_value_(name);
// Don't cache misses to avoid wasting memory when handlers check for
// optional parameters that don't exist in the request
@@ -412,6 +406,50 @@ AsyncWebParameter *AsyncWebServerRequest::getParam(const char *name) {
return param;
}
/// Search post_query then URL query with a callback.
/// Returns first truthy result, or value-initialized default.
/// URL query is accessed directly from req->uri (same pattern as url_to()).
template<typename Func>
static auto search_query_sources(httpd_req_t *req, const std::string &post_query, const char *name, Func func)
-> decltype(func(nullptr, size_t{0}, name)) {
if (!post_query.empty()) {
auto result = func(post_query.c_str(), post_query.size(), name);
if (result) {
return result;
}
}
// Use httpd API for query length, then access string directly from URI.
// http_parser identifies components by offset/length without modifying the URI string.
// This is the same pattern used by url_to().
auto len = httpd_req_get_url_query_len(req);
if (len == 0) {
return {};
}
const char *query = strchr(req->uri, '?');
if (query == nullptr) {
return {};
}
query++; // skip '?'
return func(query, len, name);
}
optional<std::string> AsyncWebServerRequest::find_query_value_(const char *name) const {
return search_query_sources(this->req_, this->post_query_, name,
[](const char *q, size_t len, const char *k) { return query_key_value(q, len, k); });
}
bool AsyncWebServerRequest::hasArg(const char *name) {
return search_query_sources(this->req_, this->post_query_, name, query_has_key);
}
std::string AsyncWebServerRequest::arg(const char *name) {
auto val = this->find_query_value_(name);
if (val.has_value()) {
return std::move(val.value());
}
return {};
}
void AsyncWebServerResponse::addHeader(const char *name, const char *value) {
httpd_resp_set_hdr(*this->req_, name, value);
}

View File

@@ -116,7 +116,8 @@ class AsyncWebServerRequest {
/// Write URL (without query string) to buffer, returns StringRef pointing to buffer.
/// URL is decoded (e.g., %20 -> space).
StringRef url_to(std::span<char, URL_BUF_SIZE> buffer) const;
/// Get URL as std::string. Prefer url_to() to avoid heap allocation.
// Remove before 2026.9.0
ESPDEPRECATED("Use url_to() instead. Removed in 2026.9.0", "2026.3.0")
std::string url() const {
char buffer[URL_BUF_SIZE];
return std::string(this->url_to(buffer));
@@ -170,14 +171,8 @@ class AsyncWebServerRequest {
AsyncWebParameter *getParam(const std::string &name) { return this->getParam(name.c_str()); }
// NOLINTNEXTLINE(readability-identifier-naming)
bool hasArg(const char *name) { return this->hasParam(name); }
std::string arg(const char *name) {
auto *param = this->getParam(name);
if (param) {
return param->value();
}
return {};
}
bool hasArg(const char *name);
std::string arg(const char *name);
std::string arg(const std::string &name) { return this->arg(name.c_str()); }
operator httpd_req_t *() const { return this->req_; }
@@ -192,6 +187,7 @@ class AsyncWebServerRequest {
// is faster than tree/hash overhead. AsyncWebParameter stores both name and value to avoid
// duplicate storage. Only successful lookups are cached to prevent cache pollution when
// handlers check for optional parameters that don't exist.
optional<std::string> find_query_value_(const char *name) const;
std::vector<AsyncWebParameter *> params_;
std::string post_query_;
AsyncWebServerRequest(httpd_req_t *req) : req_(req) {}

View File

@@ -487,6 +487,19 @@ bool WiFiComponent::matches_configured_network_(const char *ssid, const uint8_t
return false;
}
void __attribute__((flatten)) WiFiComponent::set_sta_priority(bssid_t bssid, int8_t priority) {
for (auto &it : this->sta_priorities_) {
if (it.bssid == bssid) {
it.priority = priority;
return;
}
}
this->sta_priorities_.push_back(WiFiSTAPriority{
.bssid = bssid,
.priority = priority,
});
}
void WiFiComponent::log_discarded_scan_result_(const char *ssid, const uint8_t *bssid, int8_t rssi, uint8_t channel) {
#if ESPHOME_LOG_LEVEL >= ESPHOME_LOG_LEVEL_VERBOSE
// Skip logging during roaming scans to avoid log buffer overflow

View File

@@ -488,20 +488,11 @@ class WiFiComponent : public Component {
}
return 0;
}
void set_sta_priority(const bssid_t bssid, int8_t priority) {
for (auto &it : this->sta_priorities_) {
if (it.bssid == bssid) {
it.priority = priority;
return;
}
}
this->sta_priorities_.push_back(WiFiSTAPriority{
.bssid = bssid,
.priority = priority,
});
}
void set_sta_priority(bssid_t bssid, int8_t priority);
network::IPAddresses wifi_sta_ip_addresses();
// Remove before 2026.9.0
ESPDEPRECATED("Use wifi_ssid_to() instead. Removed in 2026.9.0", "2026.3.0")
std::string wifi_ssid();
/// Write SSID to buffer without heap allocation.
/// Returns pointer to buffer, or empty string if not connected.

View File

@@ -1083,6 +1083,9 @@ template<std::size_t N> std::string format_hex(const std::array<uint8_t, N> &dat
* Each byte is displayed as a two-digit uppercase hex value, separated by the specified separator.
* Optionally includes the total byte count in parentheses at the end.
*
* @warning Allocates heap memory. Use format_hex_pretty_to() with a stack buffer instead.
* Causes heap fragmentation on long-running devices.
*
* @param data Pointer to the byte array to format.
* @param length Number of bytes in the array.
* @param separator Character to use between hex bytes (default: '.').
@@ -1108,6 +1111,9 @@ std::string format_hex_pretty(const uint8_t *data, size_t length, char separator
*
* Similar to the byte array version, but formats 16-bit words as 4-digit hex values.
*
* @warning Allocates heap memory. Use format_hex_pretty_to() with a stack buffer instead.
* Causes heap fragmentation on long-running devices.
*
* @param data Pointer to the 16-bit word array to format.
* @param length Number of 16-bit words in the array.
* @param separator Character to use between hex words (default: '.').
@@ -1131,6 +1137,9 @@ std::string format_hex_pretty(const uint16_t *data, size_t length, char separato
* Convenience overload for std::vector<uint8_t>. Formats each byte as a two-digit
* uppercase hex value with customizable separator.
*
* @warning Allocates heap memory. Use format_hex_pretty_to() with a stack buffer instead.
* Causes heap fragmentation on long-running devices.
*
* @param data Vector of bytes to format.
* @param separator Character to use between hex bytes (default: '.').
* @param show_length Whether to append the byte count in parentheses (default: true).
@@ -1154,6 +1163,9 @@ std::string format_hex_pretty(const std::vector<uint8_t> &data, char separator =
* Convenience overload for std::vector<uint16_t>. Each 16-bit word is formatted
* as a 4-digit uppercase hex value in big-endian order.
*
* @warning Allocates heap memory. Use format_hex_pretty_to() with a stack buffer instead.
* Causes heap fragmentation on long-running devices.
*
* @param data Vector of 16-bit words to format.
* @param separator Character to use between hex words (default: '.').
* @param show_length Whether to append the word count in parentheses (default: true).
@@ -1176,6 +1188,9 @@ std::string format_hex_pretty(const std::vector<uint16_t> &data, char separator
* Treats each character in the string as a byte and formats it in hex.
* Useful for debugging binary data stored in std::string containers.
*
* @warning Allocates heap memory. Use format_hex_pretty_to() with a stack buffer instead.
* Causes heap fragmentation on long-running devices.
*
* @param data String whose bytes should be formatted as hex.
* @param separator Character to use between hex bytes (default: '.').
* @param show_length Whether to append the byte count in parentheses (default: true).
@@ -1198,6 +1213,9 @@ std::string format_hex_pretty(const std::string &data, char separator = '.', boo
* Converts the integer to big-endian byte order and formats each byte as hex.
* The most significant byte appears first in the output string.
*
* @warning Allocates heap memory. Use format_hex_pretty_to() with a stack buffer instead.
* Causes heap fragmentation on long-running devices.
*
* @tparam T Unsigned integer type (uint8_t, uint16_t, uint32_t, uint64_t, etc.).
* @param val The unsigned integer value to format.
* @param separator Character to use between hex bytes (default: '.').

View File

@@ -81,6 +81,19 @@ class StringRef {
operator std::string() const { return str(); }
/// Compare with a null-terminated C string (compatible with std::string::compare)
int compare(const char *s) const {
size_t s_len = std::strlen(s);
int result = std::memcmp(base_, s, std::min(len_, s_len));
if (result != 0)
return result;
if (len_ < s_len)
return -1;
if (len_ > s_len)
return 1;
return 0;
}
/// Find first occurrence of substring, returns std::string::npos if not found.
/// Note: Requires the underlying string to be null-terminated.
size_type find(const char *s, size_type pos = 0) const {

View File

@@ -2,6 +2,7 @@
#include "helpers.h"
#include <algorithm>
#include <cinttypes>
namespace esphome {
@@ -66,121 +67,56 @@ std::string ESPTime::strftime(const char *format) {
std::string ESPTime::strftime(const std::string &format) { return this->strftime(format.c_str()); }
// Helper to parse exactly N digits, returns false if not enough digits
static bool parse_digits(const char *&p, const char *end, int count, uint16_t &value) {
value = 0;
for (int i = 0; i < count; i++) {
if (p >= end || *p < '0' || *p > '9')
return false;
value = value * 10 + (*p - '0');
p++;
}
return true;
}
// Helper to check for expected character
static bool expect_char(const char *&p, const char *end, char expected) {
if (p >= end || *p != expected)
return false;
p++;
return true;
}
bool ESPTime::strptime(const char *time_to_parse, size_t len, ESPTime &esp_time) {
// Supported formats:
// YYYY-MM-DD HH:MM:SS (19 chars)
// YYYY-MM-DD HH:MM (16 chars)
// YYYY-MM-DD (10 chars)
// HH:MM:SS (8 chars)
// HH:MM (5 chars)
uint16_t year;
uint8_t month;
uint8_t day;
uint8_t hour;
uint8_t minute;
uint8_t second;
int num;
const int ilen = static_cast<int>(len);
if (time_to_parse == nullptr || len == 0)
if (sscanf(time_to_parse, "%04hu-%02hhu-%02hhu %02hhu:%02hhu:%02hhu %n", &year, &month, &day, // NOLINT
&hour, // NOLINT
&minute, // NOLINT
&second, &num) == 6 && // NOLINT
num == ilen) {
esp_time.year = year;
esp_time.month = month;
esp_time.day_of_month = day;
esp_time.hour = hour;
esp_time.minute = minute;
esp_time.second = second;
} else if (sscanf(time_to_parse, "%04hu-%02hhu-%02hhu %02hhu:%02hhu %n", &year, &month, &day, // NOLINT
&hour, // NOLINT
&minute, &num) == 5 && // NOLINT
num == ilen) {
esp_time.year = year;
esp_time.month = month;
esp_time.day_of_month = day;
esp_time.hour = hour;
esp_time.minute = minute;
esp_time.second = 0;
} else if (sscanf(time_to_parse, "%02hhu:%02hhu:%02hhu %n", &hour, &minute, &second, &num) == 3 && // NOLINT
num == ilen) {
esp_time.hour = hour;
esp_time.minute = minute;
esp_time.second = second;
} else if (sscanf(time_to_parse, "%02hhu:%02hhu %n", &hour, &minute, &num) == 2 && // NOLINT
num == ilen) {
esp_time.hour = hour;
esp_time.minute = minute;
esp_time.second = 0;
} else if (sscanf(time_to_parse, "%04hu-%02hhu-%02hhu %n", &year, &month, &day, &num) == 3 && // NOLINT
num == ilen) {
esp_time.year = year;
esp_time.month = month;
esp_time.day_of_month = day;
} else {
return false;
const char *p = time_to_parse;
const char *end = time_to_parse + len;
uint16_t v1, v2, v3, v4, v5, v6;
// Try date formats first (start with 4-digit year)
if (len >= 10 && time_to_parse[4] == '-') {
// YYYY-MM-DD...
if (!parse_digits(p, end, 4, v1))
return false;
if (!expect_char(p, end, '-'))
return false;
if (!parse_digits(p, end, 2, v2))
return false;
if (!expect_char(p, end, '-'))
return false;
if (!parse_digits(p, end, 2, v3))
return false;
esp_time.year = v1;
esp_time.month = v2;
esp_time.day_of_month = v3;
if (p == end) {
// YYYY-MM-DD (date only)
return true;
}
if (!expect_char(p, end, ' '))
return false;
// Continue with time part: HH:MM[:SS]
if (!parse_digits(p, end, 2, v4))
return false;
if (!expect_char(p, end, ':'))
return false;
if (!parse_digits(p, end, 2, v5))
return false;
esp_time.hour = v4;
esp_time.minute = v5;
if (p == end) {
// YYYY-MM-DD HH:MM
esp_time.second = 0;
return true;
}
if (!expect_char(p, end, ':'))
return false;
if (!parse_digits(p, end, 2, v6))
return false;
esp_time.second = v6;
return p == end; // YYYY-MM-DD HH:MM:SS
}
// Try time-only formats (HH:MM[:SS])
if (len >= 5 && time_to_parse[2] == ':') {
if (!parse_digits(p, end, 2, v1))
return false;
if (!expect_char(p, end, ':'))
return false;
if (!parse_digits(p, end, 2, v2))
return false;
esp_time.hour = v1;
esp_time.minute = v2;
if (p == end) {
// HH:MM
esp_time.second = 0;
return true;
}
if (!expect_char(p, end, ':'))
return false;
if (!parse_digits(p, end, 2, v3))
return false;
esp_time.second = v3;
return p == end; // HH:MM:SS
}
return false;
return true;
}
void ESPTime::increment_second() {
@@ -257,67 +193,27 @@ void ESPTime::recalc_timestamp_utc(bool use_day_of_year) {
}
void ESPTime::recalc_timestamp_local() {
#ifdef USE_TIME_TIMEZONE
// Calculate timestamp as if fields were UTC
this->recalc_timestamp_utc(false);
if (this->timestamp == -1) {
return; // Invalid time
}
struct tm tm;
// Now convert from local to UTC by adding the offset
// POSIX: local = utc - offset, so utc = local + offset
const auto &tz = time::get_global_tz();
tm.tm_year = this->year - 1900;
tm.tm_mon = this->month - 1;
tm.tm_mday = this->day_of_month;
tm.tm_hour = this->hour;
tm.tm_min = this->minute;
tm.tm_sec = this->second;
tm.tm_isdst = -1;
if (!tz.has_dst()) {
// No DST - just apply standard offset
this->timestamp += tz.std_offset_seconds;
return;
}
// Try both interpretations to match libc mktime() with tm_isdst=-1
// For ambiguous times (fall-back repeated hour), prefer standard time
// For invalid times (spring-forward skipped hour), libc normalizes forward
time_t utc_if_dst = this->timestamp + tz.dst_offset_seconds;
time_t utc_if_std = this->timestamp + tz.std_offset_seconds;
bool dst_valid = time::is_in_dst(utc_if_dst, tz);
bool std_valid = !time::is_in_dst(utc_if_std, tz);
if (dst_valid && std_valid) {
// Ambiguous time (repeated hour during fall-back) - prefer standard time
this->timestamp = utc_if_std;
} else if (dst_valid) {
// Only DST interpretation is valid
this->timestamp = utc_if_dst;
} else if (std_valid) {
// Only standard interpretation is valid
this->timestamp = utc_if_std;
} else {
// Invalid time (skipped hour during spring-forward)
// libc normalizes forward: 02:30 CST -> 08:30 UTC -> 03:30 CDT
// Using std offset achieves this since the UTC result falls during DST
this->timestamp = utc_if_std;
}
#else
// No timezone support - treat as UTC
this->recalc_timestamp_utc(false);
#endif
this->timestamp = mktime(&tm);
}
int32_t ESPTime::timezone_offset() {
#ifdef USE_TIME_TIMEZONE
time_t now = ::time(nullptr);
const auto &tz = time::get_global_tz();
// POSIX offset is positive west, but we return offset to add to UTC to get local
// So we negate the POSIX offset
if (time::is_in_dst(now, tz)) {
return -tz.dst_offset_seconds;
}
return -tz.std_offset_seconds;
#else
// No timezone support - no offset
return 0;
#endif
struct tm local_tm = *::localtime(&now);
local_tm.tm_isdst = 0; // Cause mktime to ignore daylight saving time because we want to include it in the offset.
time_t local_time = mktime(&local_tm);
struct tm utc_tm = *::gmtime(&now);
time_t utc_time = mktime(&utc_tm);
return static_cast<int32_t>(local_time - utc_time);
}
bool ESPTime::operator<(const ESPTime &other) const { return this->timestamp < other.timestamp; }

View File

@@ -7,10 +7,6 @@
#include <span>
#include <string>
#ifdef USE_TIME_TIMEZONE
#include "esphome/components/time/posix_tz.h"
#endif
namespace esphome {
template<typename T> bool increment_time_value(T &current, uint16_t begin, uint16_t end);
@@ -109,17 +105,11 @@ struct ESPTime {
* @return The generated ESPTime
*/
static ESPTime from_epoch_local(time_t epoch) {
#ifdef USE_TIME_TIMEZONE
struct tm local_tm;
if (time::epoch_to_local_tm(epoch, time::get_global_tz(), &local_tm)) {
return ESPTime::from_c_tm(&local_tm, epoch);
struct tm *c_tm = ::localtime(&epoch);
if (c_tm == nullptr) {
return ESPTime{}; // Return an invalid ESPTime
}
// Fallback to UTC if conversion failed
return ESPTime::from_epoch_utc(epoch);
#else
// No timezone support - return UTC (no TZ configured, localtime would return UTC anyway)
return ESPTime::from_epoch_utc(epoch);
#endif
return ESPTime::from_c_tm(c_tm, epoch);
}
/** Convert an UTC epoch timestamp to a UTC time ESPTime instance.
*

View File

@@ -24,11 +24,14 @@ class RegistryEntry:
fun: Callable[..., Any],
type_id: "MockObjClass",
schema: "Schema",
*,
deferred: bool = False,
):
self.name = name
self.fun = fun
self.type_id = type_id
self.raw_schema = schema
self.deferred = deferred
@property
def coroutine_fun(self):
@@ -49,9 +52,16 @@ class Registry(dict[str, RegistryEntry]):
self.base_schema = base_schema or {}
self.type_id_key = type_id_key
def register(self, name: str, type_id: "MockObjClass", schema: "Schema"):
def register(
self,
name: str,
type_id: "MockObjClass",
schema: "Schema",
*,
deferred: bool = False,
):
def decorator(fun: Callable[..., Any]):
self[name] = RegistryEntry(name, fun, type_id, schema)
self[name] = RegistryEntry(name, fun, type_id, schema, deferred=deferred)
return fun
return decorator

View File

@@ -2020,6 +2020,8 @@ def build_message_type(
# Collect fixed_vector fields for custom decode generation
fixed_vector_fields = []
# Collect fields with (null_terminate) = true option
null_terminate_fields = []
for field in desc.field:
# Skip deprecated fields completely
@@ -2062,6 +2064,10 @@ def build_message_type(
ti = create_field_type_info(field, needs_decode, needs_encode)
# Collect fields with (null_terminate) = true for post-decode null-termination
if needs_decode and get_field_opt(field, pb.null_terminate, False):
null_terminate_fields.append(ti.field_name)
# Skip field declarations for fields that are in the base class
# but include their encode/decode logic
if field.name not in common_field_names:
@@ -2168,8 +2174,8 @@ def build_message_type(
prot = "bool decode_64bit(uint32_t field_id, Proto64Bit value) override;"
protected_content.insert(0, prot)
# Generate custom decode() override for messages with FixedVector fields
if fixed_vector_fields:
# Generate custom decode() override for messages with FixedVector or null_terminate fields
if fixed_vector_fields or null_terminate_fields:
# Generate the decode() implementation in cpp
o = f"void {desc.name}::decode(const uint8_t *buffer, size_t length) {{\n"
# Count and init each FixedVector field
@@ -2178,6 +2184,13 @@ def build_message_type(
o += f" this->{field_name}.init(count_{field_name});\n"
# Call parent decode to populate the fields
o += " ProtoDecodableMessage::decode(buffer, length);\n"
# Null-terminate fields marked with (null_terminate) = true in-place.
# Safe: decode is complete, byte after string was already parsed (next field tag)
# or is the +1 reserved byte at end of rx_buf_.
for field_name in null_terminate_fields:
o += f" if (!this->{field_name}.empty()) {{\n"
o += f" const_cast<char *>(this->{field_name}.c_str())[this->{field_name}.size()] = '\\0';\n"
o += " }\n"
o += "}\n"
cpp += o
# Generate the decode() declaration in header (public method)

View File

@@ -369,7 +369,7 @@ def get_logger_tags():
"api.service",
]
for file in CORE_COMPONENTS_PATH.rglob("*.cpp"):
data = file.read_text()
data = file.read_text(encoding="utf-8")
match = pattern.search(data)
if match:
tags.append(match.group(1))

View File

@@ -66,7 +66,6 @@ def create_test_config(config_name: str, includes: list[str]) -> dict:
],
"build_flags": [
"-Og", # optimize for debug
"-DUSE_TIME_TIMEZONE", # enable timezone code paths for testing
],
"debug_build_flags": [ # only for debug builds
"-g3", # max debug info

View File

@@ -3,9 +3,15 @@ display:
spi_16: true
pixel_mode: 18bit
model: ili9488
dc_pin: ${dc_pin}
cs_pin: ${cs_pin}
reset_pin: ${reset_pin}
dc_pin:
allow_other_uses: true
number: ${dc_pin}
cs_pin:
allow_other_uses: true
number: ${cs_pin}
reset_pin:
allow_other_uses: true
number: ${reset_pin}
data_rate: 20MHz
invert_colors: true
show_test_card: true
@@ -24,3 +30,15 @@ display:
height: 200
enable_pin: ${enable_pin}
bus_mode: single
- platform: mipi_spi
model: WAVESHARE-1.83-V2
dc_pin:
allow_other_uses: true
number: ${dc_pin}
cs_pin:
allow_other_uses: true
number: ${cs_pin}
reset_pin:
allow_other_uses: true
number: ${reset_pin}

File diff suppressed because it is too large Load Diff

View File

@@ -270,6 +270,14 @@ async def test_alarm_control_panel_state_transitions(
# The chime_sensor has chime: true, so opening it while disarmed
# should trigger on_chime callback
# Set up future for the on_ready from opening the chime sensor
# (alarm becomes "not ready" when chime sensor opens).
# We must wait for this BEFORE creating the close future, otherwise
# the open event's log can arrive late and resolve the close future,
# causing the test to proceed before the chime close is processed.
ready_after_chime_open: asyncio.Future[bool] = loop.create_future()
ready_futures.append(ready_after_chime_open)
# We're currently DISARMED - open the chime sensor
client.switch_command(chime_switch_info.key, True)
@@ -279,11 +287,18 @@ async def test_alarm_control_panel_state_transitions(
except TimeoutError:
pytest.fail(f"on_chime callback not fired. Log lines: {log_lines[-20:]}")
# Close the chime sensor and wait for alarm to become ready again
# We need to wait for this transition before testing door sensor,
# otherwise there's a race where the door sensor state change could
# arrive before the chime sensor state change, leaving the alarm in
# a continuous "not ready" state with no on_ready callback fired.
# Wait for the on_ready from the chime sensor opening
try:
await asyncio.wait_for(ready_after_chime_open, timeout=2.0)
except TimeoutError:
pytest.fail(
f"on_ready callback not fired when chime sensor opened. "
f"Log lines: {log_lines[-20:]}"
)
# Now create the future for the close event and close the sensor.
# Since we waited for the open event above, the close event's
# on_ready log cannot be confused with the open event's.
ready_after_chime_close: asyncio.Future[bool] = loop.create_future()
ready_futures.append(ready_after_chime_close)