Change to AXP2102

This commit is contained in:
Stefan Thoss
2023-12-19 21:56:15 -08:00
parent 7319e5d4ab
commit f215521303
10 changed files with 856 additions and 961 deletions

1
.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
.vscode

View File

@@ -1,5 +1,6 @@
# ESPHome AXP192 Component
ESPHome AXP192 Component
# ESPHome AXP2101 Component
*Work in progress*
This custom component it to implement support for the AXP192 for both the M5Stick-C, and the M5Stack Core2, building on top of airy10's code.

View File

@@ -1,644 +0,0 @@
#include "axp192.h"
#include "esphome/core/log.h"
#include "esp_sleep.h"
#include <Esp.h>
namespace esphome {
namespace axp192 {
static const char *TAG = "axp192.sensor";
void AXP192Component::setup()
{
switch (this->model_) {
case AXP192_M5STICKC:
{
begin(false, false, false, false, false);
break;
}
case AXP192_M5CORE2:
{
// disable LDO3 Vibration
begin(false, true, false, false, false);
break;
}
case AXP192_M5TOUGH:
{
begin(false, false, false, false, false);
// If we're waking from a cold boot
if (GetStartupReason() == "ESP_RST_POWERON")
{
ESP_LOGD(TAG, "First power on, restarting ESP...");
// Reboot the ESP with the axp initialised
ESP.restart();
}
break;
}
}
}
void AXP192Component::dump_config() {
ESP_LOGCONFIG(TAG, "AXP192:");
LOG_I2C_DEVICE(this);
LOG_SENSOR(" ", "Battery Level", this->batterylevel_sensor_);
}
float AXP192Component::get_setup_priority() const { return setup_priority::DATA; }
void AXP192Component::update() {
if (this->batterylevel_sensor_ != nullptr) {
// To be fixed
// This is not giving the right value - mostly there to have some sample sensor...
float vbat = GetBatVoltage();
float batterylevel = 100.0 * ((vbat - 3.0) / (4.1 - 3.0));
ESP_LOGD(TAG, "Got Battery Level=%f (%f)", batterylevel, vbat);
if (batterylevel > 100.) {
batterylevel = 100;
}
this->batterylevel_sensor_->publish_state(batterylevel);
}
UpdateBrightness();
}
void AXP192Component::begin(bool disableLDO2, bool disableLDO3, bool disableRTC, bool disableDCDC1, bool disableDCDC3)
{
switch (this->model_) {
case AXP192_M5STICKC:
{
// Set LDO2 & LDO3(TFT_LED & TFT) 3.0V
Write1Byte(0x28, 0xcc);
break;
}
case AXP192_M5CORE2:
{
// Set DCDC3 (TFT_LED & TFT) 3.0V
Write1Byte(0x27, 0xcc);
// Set LDO2 & LDO3(TFT_LED & TFT) 3.0V
Write1Byte(0x28, 0xcc);
break;
}
case AXP192_M5TOUGH:
{
// Set DCDC3 (TFT_LED & TFT) 3.0V
Write1Byte(0x27, 0xcc);
// Set LDO2 & LDO3(TFT_LED & TFT) 3.0V
Write1Byte(0x28, 0xcc);
break;
}
}
// Set ADC sample rate to 200hz
Write1Byte(0x84, 0b11110010);
// Set ADC to All Enable
Write1Byte(0x82, 0xff);
// Bat charge voltage to 4.2, Current 100MA
Write1Byte(0x33, 0xc0);
// Depending on configuration enable LDO2, LDO3, DCDC1, DCDC3.
uint8_t buf = (Read8bit(0x12) & 0xef) | 0x4D;
if(disableLDO3) buf &= ~(1<<3);
if(disableLDO2) buf &= ~(1<<2);
if(disableDCDC3) buf &= ~(1<<1);
if(disableDCDC1) buf &= ~(1<<0);
Write1Byte(0x12, buf);
// 128ms power on, 4s power off
Write1Byte(0x36, 0x0C);
if(!disableRTC)
{
// Set RTC voltage to 3.3V
Write1Byte(0x91, 0xF0);
// Set GPIO0 to LDO
Write1Byte(0x90, 0x02);
}
// Disable vbus hold limit
Write1Byte(0x30, 0x80);
// Set temperature protection
Write1Byte(0x39, 0xfc);
// Enable RTC BAT charge
Write1Byte(0x35, 0xa2 & (disableRTC ? 0x7F : 0xFF));
// Enable bat detection
Write1Byte(0x32, 0x46);
}
void AXP192Component::Write1Byte( uint8_t Addr , uint8_t Data )
{
this->write_byte(Addr, Data);
}
uint8_t AXP192Component::Read8bit( uint8_t Addr )
{
uint8_t data;
this->read_byte(Addr, &data);
return data;
}
uint16_t AXP192Component::Read12Bit( uint8_t Addr)
{
uint16_t Data = 0;
uint8_t buf[2];
ReadBuff(Addr,2,buf);
Data = ((buf[0] << 4) + buf[1]); //
return Data;
}
uint16_t AXP192Component::Read13Bit( uint8_t Addr)
{
uint16_t Data = 0;
uint8_t buf[2];
ReadBuff(Addr,2,buf);
Data = ((buf[0] << 5) + buf[1]); //
return Data;
}
uint16_t AXP192Component::Read16bit( uint8_t Addr )
{
uint32_t ReData = 0;
uint8_t Buff[2];
this->read_bytes(Addr, Buff, sizeof(Buff));
for( int i = 0 ; i < sizeof(Buff) ; i++ )
{
ReData <<= 8;
ReData |= Buff[i];
}
return ReData;
}
uint32_t AXP192Component::Read24bit( uint8_t Addr )
{
uint32_t ReData = 0;
uint8_t Buff[3];
this->read_bytes(Addr, Buff, sizeof(Buff));
for( int i = 0 ; i < sizeof(Buff) ; i++ )
{
ReData <<= 8;
ReData |= Buff[i];
}
return ReData;
}
uint32_t AXP192Component::Read32bit( uint8_t Addr )
{
uint32_t ReData = 0;
uint8_t Buff[4];
this->read_bytes(Addr, Buff, sizeof(Buff));
for( int i = 0 ; i < sizeof(Buff) ; i++ )
{
ReData <<= 8;
ReData |= Buff[i];
}
return ReData;
}
void AXP192Component::ReadBuff( uint8_t Addr , uint8_t Size , uint8_t *Buff )
{
this->read_bytes(Addr, Buff, Size);
}
void AXP192Component::UpdateBrightness()
{
if (brightness_ == curr_brightness_)
{
return;
}
ESP_LOGD(TAG, "Brightness=%f (Curr: %f)", brightness_, curr_brightness_);
curr_brightness_ = brightness_;
const uint8_t c_min = 7;
const uint8_t c_max = 12;
auto ubri = c_min + static_cast<uint8_t>(brightness_ * (c_max - c_min));
if (ubri > c_max)
{
ubri = c_max;
}
switch (this->model_) {
case AXP192_M5STICKC:
{
uint8_t buf = Read8bit( 0x28 );
Write1Byte( 0x28 , ((buf & 0x0f) | (ubri << 4)) );
break;
}
case AXP192_M5CORE2:
{
uint8_t buf = Read8bit( 0x27 );
Write1Byte( 0x27 , ((buf & 0x80) | (ubri << 3)) );
break;
}
case AXP192_M5TOUGH:
{
uint8_t buf = Read8bit( 0x27 );
Write1Byte( 0x27 , ((buf & 0x80) | (ubri << 3)) );
break;
}
}
}
bool AXP192Component::GetBatState()
{
if( Read8bit(0x01) | 0x20 )
return true;
else
return false;
}
uint8_t AXP192Component::GetBatData()
{
return Read8bit(0x75);
}
//---------coulombcounter_from_here---------
//enable: void EnableCoulombcounter(void);
//disable: void DisableCOulombcounter(void);
//stop: void StopCoulombcounter(void);
//clear: void ClearCoulombcounter(void);
//get charge data: uint32_t GetCoulombchargeData(void);
//get discharge data: uint32_t GetCoulombdischargeData(void);
//get coulomb val affter calculation: float GetCoulombData(void);
//------------------------------------------
void AXP192Component::EnableCoulombcounter(void)
{
Write1Byte( 0xB8 , 0x80 );
}
void AXP192Component::DisableCoulombcounter(void)
{
Write1Byte( 0xB8 , 0x00 );
}
void AXP192Component::StopCoulombcounter(void)
{
Write1Byte( 0xB8 , 0xC0 );
}
void AXP192Component::ClearCoulombcounter(void)
{
Write1Byte( 0xB8 , 0xA0 );
}
uint32_t AXP192Component::GetCoulombchargeData(void)
{
return Read32bit(0xB0);
}
uint32_t AXP192Component::GetCoulombdischargeData(void)
{
return Read32bit(0xB4);
}
float AXP192Component::GetCoulombData(void)
{
uint32_t coin = 0;
uint32_t coout = 0;
coin = GetCoulombchargeData();
coout = GetCoulombdischargeData();
//c = 65536 * current_LSB * (coin - coout) / 3600 / ADC rate
//Adc rate can be read from 84H ,change this variable if you change the ADC reate
float ccc = 65536 * 0.5 * (coin - coout) / 3600.0 / 25.0;
return ccc;
}
//----------coulomb_end_at_here----------
uint16_t AXP192Component::GetVbatData(void){
uint16_t vbat = 0;
uint8_t buf[2];
ReadBuff(0x78,2,buf);
vbat = ((buf[0] << 4) + buf[1]); // V
return vbat;
}
uint16_t AXP192Component::GetVinData(void)
{
uint16_t vin = 0;
uint8_t buf[2];
ReadBuff(0x56,2,buf);
vin = ((buf[0] << 4) + buf[1]); // V
return vin;
}
uint16_t AXP192Component::GetIinData(void)
{
uint16_t iin = 0;
uint8_t buf[2];
ReadBuff(0x58,2,buf);
iin = ((buf[0] << 4) + buf[1]);
return iin;
}
uint16_t AXP192Component::GetVusbinData(void)
{
uint16_t vin = 0;
uint8_t buf[2];
ReadBuff(0x5a,2,buf);
vin = ((buf[0] << 4) + buf[1]); // V
return vin;
}
uint16_t AXP192Component::GetIusbinData(void)
{
uint16_t iin = 0;
uint8_t buf[2];
ReadBuff(0x5C,2,buf);
iin = ((buf[0] << 4) + buf[1]);
return iin;
}
uint16_t AXP192Component::GetIchargeData(void)
{
uint16_t icharge = 0;
uint8_t buf[2];
ReadBuff(0x7A,2,buf);
icharge = ( buf[0] << 5 ) + buf[1] ;
return icharge;
}
uint16_t AXP192Component::GetIdischargeData(void)
{
uint16_t idischarge = 0;
uint8_t buf[2];
ReadBuff(0x7C,2,buf);
idischarge = ( buf[0] << 5 ) + buf[1] ;
return idischarge;
}
uint16_t AXP192Component::GetTempData(void)
{
uint16_t temp = 0;
uint8_t buf[2];
ReadBuff(0x5e,2,buf);
temp = ((buf[0] << 4) + buf[1]);
return temp;
}
uint32_t AXP192Component::GetPowerbatData(void)
{
uint32_t power = 0;
uint8_t buf[3];
ReadBuff(0x70,2,buf);
power = (buf[0] << 16) + (buf[1] << 8) + buf[2];
return power;
}
uint16_t AXP192Component::GetVapsData(void)
{
uint16_t vaps = 0;
uint8_t buf[2];
ReadBuff(0x7e,2,buf);
vaps = ((buf[0] << 4) + buf[1]);
return vaps;
}
void AXP192Component::SetSleep(void)
{
Write1Byte(0x31 , Read8bit(0x31) | ( 1 << 3)); // Power off voltag 3.0v
Write1Byte(0x90 , Read8bit(0x90) | 0x07); // GPIO1 floating
Write1Byte(0x82, 0x00); // Disable ADCs
Write1Byte(0x12, Read8bit(0x12) & 0xA1); // Disable all outputs but DCDC1
}
// -- sleep
void AXP192Component::DeepSleep(uint64_t time_in_us)
{
SetSleep();
esp_sleep_enable_ext0_wakeup((gpio_num_t)37, 0 /* LOW */);
if (time_in_us > 0)
{
esp_sleep_enable_timer_wakeup(time_in_us);
}
else
{
esp_sleep_disable_wakeup_source(ESP_SLEEP_WAKEUP_TIMER);
}
(time_in_us == 0) ? esp_deep_sleep_start() : esp_deep_sleep(time_in_us);
}
void AXP192Component::LightSleep(uint64_t time_in_us)
{
if (time_in_us > 0)
{
esp_sleep_enable_timer_wakeup(time_in_us);
}
else
{
esp_sleep_disable_wakeup_source(ESP_SLEEP_WAKEUP_TIMER);
}
esp_light_sleep_start();
}
// 0 not press, 0x01 long press, 0x02 press
uint8_t AXP192Component::GetBtnPress()
{
uint8_t state = Read8bit(0x46);
if(state)
{
Write1Byte( 0x46 , 0x03 );
}
return state;
}
uint8_t AXP192Component::GetWarningLevel(void)
{
return Read8bit(0x47) & 0x01;
}
float AXP192Component::GetBatVoltage()
{
float ADCLSB = 1.1 / 1000.0;
uint16_t ReData = Read12Bit( 0x78 );
return ReData * ADCLSB;
}
float AXP192Component::GetBatCurrent()
{
float ADCLSB = 0.5;
uint16_t CurrentIn = Read13Bit( 0x7A );
uint16_t CurrentOut = Read13Bit( 0x7C );
return ( CurrentIn - CurrentOut ) * ADCLSB;
}
float AXP192Component::GetVinVoltage()
{
float ADCLSB = 1.7 / 1000.0;
uint16_t ReData = Read12Bit( 0x56 );
return ReData * ADCLSB;
}
float AXP192Component::GetVinCurrent()
{
float ADCLSB = 0.625;
uint16_t ReData = Read12Bit( 0x58 );
return ReData * ADCLSB;
}
float AXP192Component::GetVBusVoltage()
{
float ADCLSB = 1.7 / 1000.0;
uint16_t ReData = Read12Bit( 0x5A );
return ReData * ADCLSB;
}
float AXP192Component::GetVBusCurrent()
{
float ADCLSB = 0.375;
uint16_t ReData = Read12Bit( 0x5C );
return ReData * ADCLSB;
}
float AXP192Component::GetTempInAXP192()
{
float ADCLSB = 0.1;
const float OFFSET_DEG_C = -144.7;
uint16_t ReData = Read12Bit( 0x5E );
return OFFSET_DEG_C + ReData * ADCLSB;
}
float AXP192Component::GetBatPower()
{
float VoltageLSB = 1.1;
float CurrentLCS = 0.5;
uint32_t ReData = Read24bit( 0x70 );
return VoltageLSB * CurrentLCS * ReData/ 1000.0;
}
float AXP192Component::GetBatChargeCurrent()
{
float ADCLSB = 0.5;
uint16_t ReData = Read13Bit( 0x7A );
return ReData * ADCLSB;
}
float AXP192Component::GetAPSVoltage()
{
float ADCLSB = 1.4 / 1000.0;
uint16_t ReData = Read12Bit( 0x7E );
return ReData * ADCLSB;
}
float AXP192Component::GetBatCoulombInput()
{
uint32_t ReData = Read32bit( 0xB0 );
return ReData * 65536 * 0.5 / 3600 /25.0;
}
float AXP192Component::GetBatCoulombOut()
{
uint32_t ReData = Read32bit( 0xB4 );
return ReData * 65536 * 0.5 / 3600 /25.0;
}
void AXP192Component::SetCoulombClear()
{
Write1Byte(0xB8,0x20);
}
void AXP192Component::SetLDO2( bool State )
{
uint8_t buf = Read8bit(0x12);
if( State == true )
{
buf = (1<<2) | buf;
}
else
{
buf = ~(1<<2) & buf;
}
Write1Byte( 0x12 , buf );
}
void AXP192Component::SetLDO3(bool State)
{
uint8_t buf = Read8bit(0x12);
if( State == true )
{
buf = (1<<3) | buf;
}
else
{
buf = ~(1<<3) & buf;
}
Write1Byte( 0x12 , buf );
}
void AXP192Component::SetChargeCurrent(uint8_t current)
{
uint8_t buf = Read8bit(0x33);
buf = (buf & 0xf0) | (current & 0x07);
Write1Byte(0x33, buf);
}
void AXP192Component::PowerOff()
{
Write1Byte(0x32, Read8bit(0x32) | 0x80);
}
void AXP192Component::SetAdcState(bool state)
{
Write1Byte(0x82, state ? 0xff : 0x00);
}
std::string AXP192Component::GetStartupReason() {
esp_reset_reason_t reset_reason = ::esp_reset_reason();
if (reset_reason == ESP_RST_DEEPSLEEP) {
esp_sleep_source_t wake_reason = esp_sleep_get_wakeup_cause();
if (wake_reason == ESP_SLEEP_WAKEUP_EXT0)
return "ESP_SLEEP_WAKEUP_EXT0";
if (wake_reason == ESP_SLEEP_WAKEUP_EXT0)
return "ESP_SLEEP_WAKEUP_EXT0";
if (wake_reason == ESP_SLEEP_WAKEUP_EXT1)
return "ESP_SLEEP_WAKEUP_EXT1";
if (wake_reason == ESP_SLEEP_WAKEUP_TIMER)
return "ESP_SLEEP_WAKEUP_TIMER";
if (wake_reason == ESP_SLEEP_WAKEUP_TOUCHPAD)
return "ESP_SLEEP_WAKEUP_TOUCHPAD";
if (wake_reason == ESP_SLEEP_WAKEUP_ULP)
return "ESP_SLEEP_WAKEUP_ULP";
if (wake_reason == ESP_SLEEP_WAKEUP_GPIO)
return "ESP_SLEEP_WAKEUP_GPIO";
if (wake_reason == ESP_SLEEP_WAKEUP_UART)
return "ESP_SLEEP_WAKEUP_UART";
return std::string{"WAKEUP_UNKNOWN_REASON"};
}
if (reset_reason == ESP_RST_UNKNOWN)
return "ESP_RST_UNKNOWN";
if (reset_reason == ESP_RST_POWERON)
return "ESP_RST_POWERON";
if (reset_reason == ESP_RST_SW)
return "ESP_RST_SW";
if (reset_reason == ESP_RST_PANIC)
return "ESP_RST_PANIC";
if (reset_reason == ESP_RST_INT_WDT)
return "ESP_RST_INT_WDT";
if (reset_reason == ESP_RST_TASK_WDT)
return "ESP_RST_TASK_WDT";
if (reset_reason == ESP_RST_WDT)
return "ESP_RST_WDT";
if (reset_reason == ESP_RST_BROWNOUT)
return "ESP_RST_BROWNOUT";
if (reset_reason == ESP_RST_SDIO)
return "ESP_RST_SDIO";
return std::string{"RESET_UNKNOWN_REASON"};
}
}
}

View File

@@ -0,0 +1,806 @@
#include "axp2101.h"
#include "esphome/core/log.h"
#include "esp_sleep.h"
#include <Esp.h>
namespace esphome {
namespace axp2101 {
static const char *TAG = "axp2101.sensor";
void AXP2101Component::setup()
{
Serial.printf("getID:0x%x\n", PMU.getChipID());
// Set the minimum common working voltage of the PMU VBUS input,
// below this value will turn off the PMU
PMU.setVbusVoltageLimit(XPOWERS_AXP2101_VBUS_VOL_LIM_4V36);
// Set the maximum current of the PMU VBUS input,
// higher than this value will turn off the PMU
PMU.setVbusCurrentLimit(XPOWERS_AXP2101_VBUS_CUR_LIM_1500MA);
// Get the VSYS shutdown voltage
uint16_t vol = PMU.getSysPowerDownVoltage();
Serial.printf("-> getSysPowerDownVoltage:%u\n", vol);
// Set VSY off voltage as 2600mV , Adjustment range 2600mV ~ 3300mV
PMU.setSysPowerDownVoltage(2600);
vol = PMU.getSysPowerDownVoltage();
Serial.printf("-> getSysPowerDownVoltage:%u\n", vol);
// DC1 IMAX=2A
// 1500~3400mV,100mV/step,20steps
PMU.setDC1Voltage(3300);
Serial.printf("DC1 : %s Voltage:%u mV \n", PMU.isEnableDC1() ? "+" : "-", PMU.getDC1Voltage());
// DC2 IMAX=2A
// 500~1200mV 10mV/step,71steps
// 1220~1540mV 20mV/step,17steps
PMU.setDC2Voltage(1000);
Serial.printf("DC2 : %s Voltage:%u mV \n", PMU.isEnableDC2() ? "+" : "-", PMU.getDC2Voltage());
// DC3 IMAX = 2A
// 500~1200mV,10mV/step,71steps
// 1220~1540mV,20mV/step,17steps
// 1600~3400mV,100mV/step,19steps
PMU.setDC3Voltage(3300);
Serial.printf("DC3 : %s Voltage:%u mV \n", PMU.isEnableDC3() ? "+" : "-", PMU.getDC3Voltage());
// DCDC4 IMAX=1.5A
// 500~1200mV,10mV/step,71steps
// 1220~1840mV,20mV/step,32steps
PMU.setDC4Voltage(1000);
Serial.printf("DC4 : %s Voltage:%u mV \n", PMU.isEnableDC4() ? "+" : "-", PMU.getDC4Voltage());
// DC5 IMAX=2A
// 1200mV
// 1400~3700mV,100mV/step,24steps
PMU.setDC5Voltage(3300);
Serial.printf("DC5 : %s Voltage:%u mV \n", PMU.isEnableDC5() ? "+" : "-", PMU.getDC5Voltage());
//ALDO1 IMAX=300mA
//500~3500mV, 100mV/step,31steps
PMU.setALDO1Voltage(3300);
//ALDO2 IMAX=300mA
//500~3500mV, 100mV/step,31steps
PMU.setALDO2Voltage(3300);
//ALDO3 IMAX=300mA
//500~3500mV, 100mV/step,31steps
PMU.setALDO3Voltage(3300);
//ALDO4 IMAX=300mA
//500~3500mV, 100mV/step,31steps
PMU.setALDO4Voltage(3300);
//BLDO1 IMAX=300mA
//500~3500mV, 100mV/step,31steps
PMU.setBLDO1Voltage(3300);
//BLDO2 IMAX=300mA
//500~3500mV, 100mV/step,31steps
PMU.setBLDO2Voltage(3300);
//CPUSLDO IMAX=30mA
//500~1400mV,50mV/step,19steps
PMU.setCPUSLDOVoltage(1000);
//DLDO1 IMAX=300mA
//500~3400mV, 100mV/step,29steps
PMU.setDLDO1Voltage(3300);
//DLDO2 IMAX=300mA
//500~1400mV, 50mV/step,2steps
PMU.setDLDO2Voltage(3300);
// PMU.enableDC1();
PMU.enableDC2();
PMU.enableDC3();
PMU.enableDC4();
PMU.enableDC5();
PMU.enableALDO1();
PMU.enableALDO2();
PMU.enableALDO3();
PMU.enableALDO4();
PMU.enableBLDO1();
PMU.enableBLDO2();
PMU.enableCPUSLDO();
PMU.enableDLDO1();
PMU.enableDLDO2();
Serial.println("DCDC=======================================================================");
Serial.printf("DC1 : %s Voltage:%u mV \n", PMU.isEnableDC1() ? "+" : "-", PMU.getDC1Voltage());
Serial.printf("DC2 : %s Voltage:%u mV \n", PMU.isEnableDC2() ? "+" : "-", PMU.getDC2Voltage());
Serial.printf("DC3 : %s Voltage:%u mV \n", PMU.isEnableDC3() ? "+" : "-", PMU.getDC3Voltage());
Serial.printf("DC4 : %s Voltage:%u mV \n", PMU.isEnableDC4() ? "+" : "-", PMU.getDC4Voltage());
Serial.printf("DC5 : %s Voltage:%u mV \n", PMU.isEnableDC5() ? "+" : "-", PMU.getDC5Voltage());
Serial.println("ALDO=======================================================================");
Serial.printf("ALDO1: %s Voltage:%u mV\n", PMU.isEnableALDO1() ? "+" : "-", PMU.getALDO1Voltage());
Serial.printf("ALDO2: %s Voltage:%u mV\n", PMU.isEnableALDO2() ? "+" : "-", PMU.getALDO2Voltage());
Serial.printf("ALDO3: %s Voltage:%u mV\n", PMU.isEnableALDO3() ? "+" : "-", PMU.getALDO3Voltage());
Serial.printf("ALDO4: %s Voltage:%u mV\n", PMU.isEnableALDO4() ? "+" : "-", PMU.getALDO4Voltage());
Serial.println("BLDO=======================================================================");
Serial.printf("BLDO1: %s Voltage:%u mV\n", PMU.isEnableBLDO1() ? "+" : "-", PMU.getBLDO1Voltage());
Serial.printf("BLDO2: %s Voltage:%u mV\n", PMU.isEnableBLDO2() ? "+" : "-", PMU.getBLDO2Voltage());
Serial.println("CPUSLDO====================================================================");
Serial.printf("CPUSLDO: %s Voltage:%u mV\n", PMU.isEnableCPUSLDO() ? "+" : "-", PMU.getCPUSLDOVoltage());
Serial.println("DLDO=======================================================================");
Serial.printf("DLDO1: %s Voltage:%u mV\n", PMU.isEnableDLDO1() ? "+" : "-", PMU.getDLDO1Voltage());
Serial.printf("DLDO2: %s Voltage:%u mV\n", PMU.isEnableDLDO2() ? "+" : "-", PMU.getDLDO2Voltage());
Serial.println("===========================================================================");
// Set the time of pressing the button to turn off
PMU.setPowerKeyPressOffTime(XPOWERS_POWEROFF_4S);
uint8_t opt = PMU.getPowerKeyPressOffTime();
Serial.print("PowerKeyPressOffTime:");
switch (opt) {
case XPOWERS_POWEROFF_4S: Serial.println("4 Second");
break;
case XPOWERS_POWEROFF_6S: Serial.println("6 Second");
break;
case XPOWERS_POWEROFF_8S: Serial.println("8 Second");
break;
case XPOWERS_POWEROFF_10S: Serial.println("10 Second");
break;
default:
break;
}
// Set the button power-on press time
PMU.setPowerKeyPressOnTime(XPOWERS_POWERON_128MS);
opt = PMU.getPowerKeyPressOnTime();
Serial.print("PowerKeyPressOnTime:");
switch (opt) {
case XPOWERS_POWERON_128MS: Serial.println("128 Ms");
break;
case XPOWERS_POWERON_512MS: Serial.println("512 Ms");
break;
case XPOWERS_POWERON_1S: Serial.println("1 Second");
break;
case XPOWERS_POWERON_2S: Serial.println("2 Second");
break;
default:
break;
}
Serial.println("===========================================================================");
bool en;
// DCDC 120%(130%) high voltage turn off PMIC function
en = PMU.getDCHighVoltagePowerDowmEn();
Serial.print("getDCHighVoltagePowerDowmEn:");
Serial.println(en ? "ENABLE" : "DISABLE");
// DCDC1 85% low voltage turn off PMIC function
en = PMU.getDC1LowVoltagePowerDowmEn();
Serial.print("getDC1LowVoltagePowerDowmEn:");
Serial.println(en ? "ENABLE" : "DISABLE");
// DCDC2 85% low voltage turn off PMIC function
en = PMU.getDC2LowVoltagePowerDowmEn();
Serial.print("getDC2LowVoltagePowerDowmEn:");
Serial.println(en ? "ENABLE" : "DISABLE");
// DCDC3 85% low voltage turn off PMIC function
en = PMU.getDC3LowVoltagePowerDowmEn();
Serial.print("getDC3LowVoltagePowerDowmEn:");
Serial.println(en ? "ENABLE" : "DISABLE");
// DCDC4 85% low voltage turn off PMIC function
en = PMU.getDC4LowVoltagePowerDowmEn();
Serial.print("getDC4LowVoltagePowerDowmEn:");
Serial.println(en ? "ENABLE" : "DISABLE");
// DCDC5 85% low voltage turn off PMIC function
en = PMU.getDC5LowVoltagePowerDowmEn();
Serial.print("getDC5LowVoltagePowerDowmEn:");
Serial.println(en ? "ENABLE" : "DISABLE");
// PMU.setDCHighVoltagePowerDowm(true);
// PMU.setDC1LowVoltagePowerDowm(true);
// PMU.setDC2LowVoltagePowerDowm(true);
// PMU.setDC3LowVoltagePowerDowm(true);
// PMU.setDC4LowVoltagePowerDowm(true);
// PMU.setDC5LowVoltagePowerDowm(true);
// It is necessary to disable the detection function of the TS pin on the board
// without the battery temperature detection function, otherwise it will cause abnormal charging
PMU.disableTSPinMeasure();
// PMU.enableTemperatureMeasure();
// Enable internal ADC detection
PMU.enableBattDetection();
PMU.enableVbusVoltageMeasure();
PMU.enableBattVoltageMeasure();
PMU.enableSystemVoltageMeasure();
/*
The default setting is CHGLED is automatically controlled by the PMU.
- XPOWERS_CHG_LED_OFF,
- XPOWERS_CHG_LED_BLINK_1HZ,
- XPOWERS_CHG_LED_BLINK_4HZ,
- XPOWERS_CHG_LED_ON,
- XPOWERS_CHG_LED_CTRL_CHG,
* */
PMU.setChargingLedMode(XPOWERS_CHG_LED_OFF);
// Force add pull-up
pinMode(pmu_irq_pin, INPUT_PULLUP);
attachInterrupt(pmu_irq_pin, setFlag, FALLING);
// Disable all interrupts
PMU.disableIRQ(XPOWERS_AXP2101_ALL_IRQ);
// Clear all interrupt flags
PMU.clearIrqStatus();
// Enable the required interrupt function
PMU.enableIRQ(
XPOWERS_AXP2101_BAT_INSERT_IRQ | XPOWERS_AXP2101_BAT_REMOVE_IRQ | //BATTERY
XPOWERS_AXP2101_VBUS_INSERT_IRQ | XPOWERS_AXP2101_VBUS_REMOVE_IRQ | //VBUS
XPOWERS_AXP2101_PKEY_SHORT_IRQ | XPOWERS_AXP2101_PKEY_LONG_IRQ | //POWER KEY
XPOWERS_AXP2101_BAT_CHG_DONE_IRQ | XPOWERS_AXP2101_BAT_CHG_START_IRQ //CHARGE
// XPOWERS_AXP2101_PKEY_NEGATIVE_IRQ | XPOWERS_AXP2101_PKEY_POSITIVE_IRQ | //POWER KEY
);
// Set the precharge charging current
PMU.setPrechargeCurr(XPOWERS_AXP2101_PRECHARGE_50MA);
// Set constant current charge current limit
PMU.setChargerConstantCurr(XPOWERS_AXP2101_CHG_CUR_200MA);
// Set stop charging termination current
PMU.setChargerTerminationCurr(XPOWERS_AXP2101_CHG_ITERM_25MA);
// Set charge cut-off voltage
PMU.setChargeTargetVoltage(XPOWERS_AXP2101_CHG_VOL_4V1);
// Set the watchdog trigger event type
PMU.setWatchdogConfig(XPOWERS_AXP2101_WDT_IRQ_TO_PIN);
// Set watchdog timeout
PMU.setWatchdogTimeout(XPOWERS_AXP2101_WDT_TIMEOUT_4S);
// Enable watchdog to trigger interrupt event
PMU.enableWatchdog();
// PMU.disableWatchdog();
// Enable Button Battery charge
PMU.enableButtonBatteryCharge();
// Set Button Battery charge voltage
PMU.setButtonBatteryChargeVoltage(3300);
}
void AXP2101Component::dump_config() {
ESP_LOGCONFIG(TAG, "AXP2101:");
LOG_I2C_DEVICE(this);
LOG_SENSOR(" ", "Battery Level", this->batterylevel_sensor_);
}
float AXP2101Component::get_setup_priority() const { return setup_priority::DATA; }
void AXP2101Component::update() {
if (this->batterylevel_sensor_ != nullptr) {
float vbat = PMU.getBattVoltage();
// The battery percentage may be inaccurate at first use, the PMU will automatically
// learn the battery curve and will automatically calibrate the battery percentage
// after a charge and discharge cycle
float batterylevel;
if (PMU.isBatteryConnect()) {
batterylevel = PMU.getBatteryPercent();
} else {
batterylevel = 100.0 * ((vbat - 3.0) / (4.1 - 3.0));
}
ESP_LOGD(TAG, "Got Battery Level=%f (%f)", batterylevel, vbat);
if (batterylevel > 100.) {
batterylevel = 100;
}
this->batterylevel_sensor_->publish_state(batterylevel);
}
UpdateBrightness();
}
void AXP2101Component::Write1Byte( uint8_t Addr , uint8_t Data )
{
this->write_byte(Addr, Data);
}
uint8_t AXP2101Component::Read8bit( uint8_t Addr )
{
uint8_t data;
this->read_byte(Addr, &data);
return data;
}
uint16_t AXP2101Component::Read12Bit( uint8_t Addr)
{
uint16_t Data = 0;
uint8_t buf[2];
ReadBuff(Addr,2,buf);
Data = ((buf[0] << 4) + buf[1]); //
return Data;
}
uint16_t AXP2101Component::Read13Bit( uint8_t Addr)
{
uint16_t Data = 0;
uint8_t buf[2];
ReadBuff(Addr,2,buf);
Data = ((buf[0] << 5) + buf[1]); //
return Data;
}
uint16_t AXP2101Component::Read16bit( uint8_t Addr )
{
uint32_t ReData = 0;
uint8_t Buff[2];
this->read_bytes(Addr, Buff, sizeof(Buff));
for( int i = 0 ; i < sizeof(Buff) ; i++ )
{
ReData <<= 8;
ReData |= Buff[i];
}
return ReData;
}
uint32_t AXP2101Component::Read24bit( uint8_t Addr )
{
uint32_t ReData = 0;
uint8_t Buff[3];
this->read_bytes(Addr, Buff, sizeof(Buff));
for( int i = 0 ; i < sizeof(Buff) ; i++ )
{
ReData <<= 8;
ReData |= Buff[i];
}
return ReData;
}
uint32_t AXP2101Component::Read32bit( uint8_t Addr )
{
uint32_t ReData = 0;
uint8_t Buff[4];
this->read_bytes(Addr, Buff, sizeof(Buff));
for( int i = 0 ; i < sizeof(Buff) ; i++ )
{
ReData <<= 8;
ReData |= Buff[i];
}
return ReData;
}
void AXP2101Component::ReadBuff( uint8_t Addr , uint8_t Size , uint8_t *Buff )
{
this->read_bytes(Addr, Buff, Size);
}
void AXP2101Component::UpdateBrightness()
{
if (brightness_ == curr_brightness_)
{
return;
}
ESP_LOGD(TAG, "Brightness=%f (Curr: %f)", brightness_, curr_brightness_);
curr_brightness_ = brightness_;
const uint8_t c_min = 7;
const uint8_t c_max = 12;
auto ubri = c_min + static_cast<uint8_t>(brightness_ * (c_max - c_min));
if (ubri > c_max)
{
ubri = c_max;
}
switch (this->model_) {
case AXP2101_M5STICKC:
{
uint8_t buf = Read8bit( 0x28 );
Write1Byte( 0x28 , ((buf & 0x0f) | (ubri << 4)) );
break;
}
case AXP2101_M5CORE2:
{
uint8_t buf = Read8bit( 0x27 );
Write1Byte( 0x27 , ((buf & 0x80) | (ubri << 3)) );
break;
}
case AXP2101_M5TOUGH:
{
uint8_t buf = Read8bit( 0x27 );
Write1Byte( 0x27 , ((buf & 0x80) | (ubri << 3)) );
break;
}
}
}
bool AXP2101Component::GetBatState()
{
if( Read8bit(0x01) | 0x20 )
return true;
else
return false;
}
uint8_t AXP2101Component::GetBatData()
{
return Read8bit(0x75);
}
//---------coulombcounter_from_here---------
//enable: void EnableCoulombcounter(void);
//disable: void DisableCOulombcounter(void);
//stop: void StopCoulombcounter(void);
//clear: void ClearCoulombcounter(void);
//get charge data: uint32_t GetCoulombchargeData(void);
//get discharge data: uint32_t GetCoulombdischargeData(void);
//get coulomb val affter calculation: float GetCoulombData(void);
//------------------------------------------
void AXP2101Component::EnableCoulombcounter(void)
{
Write1Byte( 0xB8 , 0x80 );
}
void AXP2101Component::DisableCoulombcounter(void)
{
Write1Byte( 0xB8 , 0x00 );
}
void AXP2101Component::StopCoulombcounter(void)
{
Write1Byte( 0xB8 , 0xC0 );
}
void AXP2101Component::ClearCoulombcounter(void)
{
Write1Byte( 0xB8 , 0xA0 );
}
uint32_t AXP2101Component::GetCoulombchargeData(void)
{
return Read32bit(0xB0);
}
uint32_t AXP2101Component::GetCoulombdischargeData(void)
{
return Read32bit(0xB4);
}
float AXP2101Component::GetCoulombData(void)
{
uint32_t coin = 0;
uint32_t coout = 0;
coin = GetCoulombchargeData();
coout = GetCoulombdischargeData();
//c = 65536 * current_LSB * (coin - coout) / 3600 / ADC rate
//Adc rate can be read from 84H ,change this variable if you change the ADC reate
float ccc = 65536 * 0.5 * (coin - coout) / 3600.0 / 25.0;
return ccc;
}
//----------coulomb_end_at_here----------
uint16_t AXP2101Component::GetVbatData(void){
uint16_t vbat = 0;
uint8_t buf[2];
ReadBuff(0x78,2,buf);
vbat = ((buf[0] << 4) + buf[1]); // V
return vbat;
}
uint16_t AXP2101Component::GetVinData(void)
{
uint16_t vin = 0;
uint8_t buf[2];
ReadBuff(0x56,2,buf);
vin = ((buf[0] << 4) + buf[1]); // V
return vin;
}
uint16_t AXP2101Component::GetIinData(void)
{
uint16_t iin = 0;
uint8_t buf[2];
ReadBuff(0x58,2,buf);
iin = ((buf[0] << 4) + buf[1]);
return iin;
}
uint16_t AXP2101Component::GetVusbinData(void)
{
uint16_t vin = 0;
uint8_t buf[2];
ReadBuff(0x5a,2,buf);
vin = ((buf[0] << 4) + buf[1]); // V
return vin;
}
uint16_t AXP2101Component::GetIusbinData(void)
{
uint16_t iin = 0;
uint8_t buf[2];
ReadBuff(0x5C,2,buf);
iin = ((buf[0] << 4) + buf[1]);
return iin;
}
uint16_t AXP2101Component::GetIchargeData(void)
{
uint16_t icharge = 0;
uint8_t buf[2];
ReadBuff(0x7A,2,buf);
icharge = ( buf[0] << 5 ) + buf[1] ;
return icharge;
}
uint16_t AXP2101Component::GetIdischargeData(void)
{
uint16_t idischarge = 0;
uint8_t buf[2];
ReadBuff(0x7C,2,buf);
idischarge = ( buf[0] << 5 ) + buf[1] ;
return idischarge;
}
uint16_t AXP2101Component::GetTempData(void)
{
uint16_t temp = 0;
uint8_t buf[2];
ReadBuff(0x5e,2,buf);
temp = ((buf[0] << 4) + buf[1]);
return temp;
}
uint32_t AXP2101Component::GetPowerbatData(void)
{
uint32_t power = 0;
uint8_t buf[3];
ReadBuff(0x70,2,buf);
power = (buf[0] << 16) + (buf[1] << 8) + buf[2];
return power;
}
uint16_t AXP2101Component::GetVapsData(void)
{
uint16_t vaps = 0;
uint8_t buf[2];
ReadBuff(0x7e,2,buf);
vaps = ((buf[0] << 4) + buf[1]);
return vaps;
}
void AXP2101Component::SetSleep(void)
{
Write1Byte(0x31 , Read8bit(0x31) | ( 1 << 3)); // Power off voltag 3.0v
Write1Byte(0x90 , Read8bit(0x90) | 0x07); // GPIO1 floating
Write1Byte(0x82, 0x00); // Disable ADCs
Write1Byte(0x12, Read8bit(0x12) & 0xA1); // Disable all outputs but DCDC1
}
// -- sleep
void AXP2101Component::DeepSleep(uint64_t time_in_us)
{
SetSleep();
esp_sleep_enable_ext0_wakeup((gpio_num_t)37, 0 /* LOW */);
if (time_in_us > 0)
{
esp_sleep_enable_timer_wakeup(time_in_us);
}
else
{
esp_sleep_disable_wakeup_source(ESP_SLEEP_WAKEUP_TIMER);
}
(time_in_us == 0) ? esp_deep_sleep_start() : esp_deep_sleep(time_in_us);
}
void AXP2101Component::LightSleep(uint64_t time_in_us)
{
if (time_in_us > 0)
{
esp_sleep_enable_timer_wakeup(time_in_us);
}
else
{
esp_sleep_disable_wakeup_source(ESP_SLEEP_WAKEUP_TIMER);
}
esp_light_sleep_start();
}
// 0 not press, 0x01 long press, 0x02 press
uint8_t AXP2101Component::GetBtnPress()
{
uint8_t state = Read8bit(0x46);
if(state)
{
Write1Byte( 0x46 , 0x03 );
}
return state;
}
uint8_t AXP2101Component::GetWarningLevel(void)
{
return Read8bit(0x47) & 0x01;
}
float AXP2101Component::GetBatCurrent()
{
float ADCLSB = 0.5;
uint16_t CurrentIn = Read13Bit( 0x7A );
uint16_t CurrentOut = Read13Bit( 0x7C );
return ( CurrentIn - CurrentOut ) * ADCLSB;
}
float AXP2101Component::GetVinVoltage()
{
float ADCLSB = 1.7 / 1000.0;
uint16_t ReData = Read12Bit( 0x56 );
return ReData * ADCLSB;
}
float AXP2101Component::GetVinCurrent()
{
float ADCLSB = 0.625;
uint16_t ReData = Read12Bit( 0x58 );
return ReData * ADCLSB;
}
float AXP2101Component::GetVBusVoltage()
{
float ADCLSB = 1.7 / 1000.0;
uint16_t ReData = Read12Bit( 0x5A );
return ReData * ADCLSB;
}
float AXP2101Component::GetVBusCurrent()
{
float ADCLSB = 0.375;
uint16_t ReData = Read12Bit( 0x5C );
return ReData * ADCLSB;
}
float AXP2101Component::GetTempInAXP2101()
{
float ADCLSB = 0.1;
const float OFFSET_DEG_C = -144.7;
uint16_t ReData = Read12Bit( 0x5E );
return OFFSET_DEG_C + ReData * ADCLSB;
}
float AXP2101Component::GetBatPower()
{
float VoltageLSB = 1.1;
float CurrentLCS = 0.5;
uint32_t ReData = Read24bit( 0x70 );
return VoltageLSB * CurrentLCS * ReData/ 1000.0;
}
float AXP2101Component::GetBatChargeCurrent()
{
float ADCLSB = 0.5;
uint16_t ReData = Read13Bit( 0x7A );
return ReData * ADCLSB;
}
float AXP2101Component::GetAPSVoltage()
{
float ADCLSB = 1.4 / 1000.0;
uint16_t ReData = Read12Bit( 0x7E );
return ReData * ADCLSB;
}
float AXP2101Component::GetBatCoulombInput()
{
uint32_t ReData = Read32bit( 0xB0 );
return ReData * 65536 * 0.5 / 3600 /25.0;
}
float AXP2101Component::GetBatCoulombOut()
{
uint32_t ReData = Read32bit( 0xB4 );
return ReData * 65536 * 0.5 / 3600 /25.0;
}
void AXP2101Component::SetCoulombClear()
{
Write1Byte(0xB8,0x20);
}
void AXP2101Component::SetLDO2( bool State )
{
uint8_t buf = Read8bit(0x12);
if( State == true )
{
buf = (1<<2) | buf;
}
else
{
buf = ~(1<<2) & buf;
}
Write1Byte( 0x12 , buf );
}
void AXP2101Component::SetLDO3(bool State)
{
uint8_t buf = Read8bit(0x12);
if( State == true )
{
buf = (1<<3) | buf;
}
else
{
buf = ~(1<<3) & buf;
}
Write1Byte( 0x12 , buf );
}
void AXP2101Component::SetChargeCurrent(uint8_t current)
{
uint8_t buf = Read8bit(0x33);
buf = (buf & 0xf0) | (current & 0x07);
Write1Byte(0x33, buf);
}
void AXP2101Component::PowerOff()
{
Write1Byte(0x32, Read8bit(0x32) | 0x80);
}
void AXP2101Component::SetAdcState(bool state)
{
Write1Byte(0x82, state ? 0xff : 0x00);
}
std::string AXP2101Component::GetStartupReason() {
esp_reset_reason_t reset_reason = ::esp_reset_reason();
if (reset_reason == ESP_RST_DEEPSLEEP) {
esp_sleep_source_t wake_reason = esp_sleep_get_wakeup_cause();
if (wake_reason == ESP_SLEEP_WAKEUP_EXT0)
return "ESP_SLEEP_WAKEUP_EXT0";
if (wake_reason == ESP_SLEEP_WAKEUP_EXT0)
return "ESP_SLEEP_WAKEUP_EXT0";
if (wake_reason == ESP_SLEEP_WAKEUP_EXT1)
return "ESP_SLEEP_WAKEUP_EXT1";
if (wake_reason == ESP_SLEEP_WAKEUP_TIMER)
return "ESP_SLEEP_WAKEUP_TIMER";
if (wake_reason == ESP_SLEEP_WAKEUP_TOUCHPAD)
return "ESP_SLEEP_WAKEUP_TOUCHPAD";
if (wake_reason == ESP_SLEEP_WAKEUP_ULP)
return "ESP_SLEEP_WAKEUP_ULP";
if (wake_reason == ESP_SLEEP_WAKEUP_GPIO)
return "ESP_SLEEP_WAKEUP_GPIO";
if (wake_reason == ESP_SLEEP_WAKEUP_UART)
return "ESP_SLEEP_WAKEUP_UART";
return std::string{"WAKEUP_UNKNOWN_REASON"};
}
if (reset_reason == ESP_RST_UNKNOWN)
return "ESP_RST_UNKNOWN";
if (reset_reason == ESP_RST_POWERON)
return "ESP_RST_POWERON";
if (reset_reason == ESP_RST_SW)
return "ESP_RST_SW";
if (reset_reason == ESP_RST_PANIC)
return "ESP_RST_PANIC";
if (reset_reason == ESP_RST_INT_WDT)
return "ESP_RST_INT_WDT";
if (reset_reason == ESP_RST_TASK_WDT)
return "ESP_RST_TASK_WDT";
if (reset_reason == ESP_RST_WDT)
return "ESP_RST_WDT";
if (reset_reason == ESP_RST_BROWNOUT)
return "ESP_RST_BROWNOUT";
if (reset_reason == ESP_RST_SDIO)
return "ESP_RST_SDIO";
return std::string{"RESET_UNKNOWN_REASON"};
}
}
}

View File

@@ -1,17 +1,28 @@
#ifndef __AXP192_H__
#define __AXP192_H__
#ifndef __AXP2101_H__
#define __AXP2101_H__
#include "esphome/core/component.h"
#include "esphome/components/sensor/sensor.h"
#include "esphome/components/i2c/i2c.h"
namespace esphome {
namespace axp192 {
#define XPOWERS_CHIP_AXP2101
#include "XPowersLib.h"
enum AXP192Model {
AXP192_M5STICKC = 0,
AXP192_M5CORE2,
AXP192_M5TOUGH,
bool pmu_flag = 0;
XPowersPMU PMU;
void setFlag(void)
{
pmu_flag = true;
}
namespace esphome {
namespace axp2101 {
enum AXP2101Model {
AXP2101_M5STICKC = 0,
AXP2101_M5CORE2,
AXP2101_M5TOUGH,
};
#define SLEEP_MSEC(us) (((uint64_t)us) * 1000L)
@@ -28,11 +39,11 @@ enum AXP192Model {
#define CURRENT_630MA (0b0110)
#define CURRENT_700MA (0b0111)
class AXP192Component : public PollingComponent, public i2c::I2CDevice {
class AXP2101Component : public PollingComponent, public i2c::I2CDevice {
public:
void set_batterylevel_sensor(sensor::Sensor *batterylevel_sensor) { batterylevel_sensor_ = batterylevel_sensor; }
void set_brightness(float brightness) { brightness_ = brightness; }
void set_model(AXP192Model model) { this->model_ = model; }
void set_model(AXP2101Model model) { this->model_ = model; }
// ========== INTERNAL METHODS ==========
// (In most use cases you won't need these)
@@ -48,7 +59,7 @@ protected:
sensor::Sensor *batterylevel_sensor_;
float brightness_{1.0f};
float curr_brightness_{-1.0f};
AXP192Model model_;
AXP2101Model model_;
/** M5 Stick Values
* LDO2: Display backlight
@@ -62,7 +73,6 @@ protected:
* LD03: Vibration Motor
*/
void begin(bool disableLDO2 = false, bool disableLDO3 = false, bool disableRTC = false, bool disableDCDC1 = false, bool disableDCDC3 = false);
void UpdateBrightness();
bool GetBatState();
uint8_t GetBatData();
@@ -94,13 +104,12 @@ protected:
// void SetChargeVoltage( uint8_t );
void SetChargeCurrent( uint8_t );
float GetBatVoltage();
float GetBatCurrent();
float GetVinVoltage();
float GetVinCurrent();
float GetVBusVoltage();
float GetVBusCurrent();
float GetTempInAXP192();
float GetTempInAXP2101();
float GetBatPower();
float GetBatChargeCurrent();
float GetAPSVoltage();
@@ -128,4 +137,4 @@ protected:
}
}
#endif
#endif

View File

@@ -6,21 +6,19 @@ from esphome.const import CONF_ID,\
DEPENDENCIES = ['i2c']
axp192_ns = cg.esphome_ns.namespace('axp192')
AXP192Component = axp192_ns.class_('AXP192Component', cg.PollingComponent, i2c.I2CDevice)
AXP192Model = axp192_ns.enum("AXP192Model")
axp2101_ns = cg.esphome_ns.namespace('axp2101')
AXP2101Component = axp2101_ns.class_('AXP2101Component', cg.PollingComponent, i2c.I2CDevice)
AXP2101Model = axp2101_ns.enum("AXP2101Model")
MODELS = {
"M5CORE2": AXP192Model.AXP192_M5CORE2,
"M5STICKC": AXP192Model.AXP192_M5STICKC,
"M5TOUGH": AXP192Model.AXP192_M5TOUGH,
"M5CORE2": AXP2101Model.AXP2101_M5CORE2,
}
AXP192_MODEL = cv.enum(MODELS, upper=True, space="_")
AXP2101_MODEL = cv.enum(MODELS, upper=True, space="_")
CONFIG_SCHEMA = cv.Schema({
cv.GenerateID(): cv.declare_id(AXP192Component),
cv.Required(CONF_MODEL): AXP192_MODEL,
cv.GenerateID(): cv.declare_id(AXP2101Component),
cv.Required(CONF_MODEL): AXP2101_MODEL,
cv.Optional(CONF_BATTERY_LEVEL):
sensor.sensor_schema(
unit_of_measurement=UNIT_PERCENT,
@@ -36,7 +34,10 @@ def to_code(config):
yield cg.register_component(var, config)
yield i2c.register_i2c_device(var, config)
# cg.add_library("lewisxhe/XPowersLib", "0.2.1")
cg.add(var.set_model(config[CONF_MODEL]))
if CONF_BATTERY_LEVEL in config:
conf = config[CONF_BATTERY_LEVEL]
sens = yield sensor.new_sensor(conf)

View File

@@ -32,23 +32,22 @@ ota:
web_server:
# AXP192 power management - must be present to initialize TFT power on
# axp2101 power management - must be present to initialize TFT power on
sensor:
- platform: axp192
- platform: axp2101
model: M5CORE2
address: 0x34
i2c_id: bus_a
update_interval: 30s
brightness: 75%
brightness: 75%
battery_level:
name: "${upper_devicename} Battery Level"
id: "${devicename}_batterylevel"
name: "Battery Level"
- platform: wifi_signal
name: ${upper_devicename} WiFi Signal
id: wifi_dbm
name: WiFi Signal
- platform: uptime
name: ${upper_devicename} Uptime
name: Uptime Sensor
spi:
clk_pin: GPIO18
@@ -66,11 +65,10 @@ font:
id: font1
size: 8
# # builtin 80x160 TFT
display:
- platform: ili9341
model: M5STACK
cs_pin: 5
dc_pin: 15
- platform: ili9xxx
model: ILI9342
cs_pin: GPIO5
dc_pin: GPIO15
lambda: |-
it.line(20, 20, 200, 200);
it.print(80, 0, id(my_font), id(my_red), TextAlign::TOP_CENTER, "Hello World!");

View File

@@ -1,134 +0,0 @@
esphome:
name: m5stick-c
platform: ESP32
board: m5stick-c
platformio_options:
upload_speed: 115200
# Use this to hardlink the component if it is not discovered
# includes:
# - /config/custom_components/axp192/axp192.h
wifi:
ssid: "SSID"
password: "PASSPHRASE"
# Enable fallback hotspot (captive portal) in case wifi connection fails
ap:
ssid: "XXX"
password: "XXX"
# Enable logging
logger:
substitutions:
devicename: m5stick
upper_devicename: M5StickC
captive_portal:
api:
ota:
web_server:
binary_sensor:
- platform: gpio
pin:
number: GPIO37
inverted: true
name: ${upper_devicename} Button A
on_press:
then:
- light.turn_on: led1
on_release:
then:
- light.turn_off: led1
- platform: gpio
pin:
number: GPIO39
inverted: true
name: ${upper_devicename} Button B
on_press:
then:
- light.turn_on: led1
on_release:
then:
- light.turn_off: led1
# AXP192 power management - must be present to initialize TFT power on
sensor:
- platform: axp192
model: M5STICKC
address: 0x34
i2c_id: bus_a
update_interval: 30s
battery_level:
name: "M5Stick Battery Level"
id: "m5stick_batterylevel"
- platform: wifi_signal
name: ${upper_devicename} WiFi Signal
id: wifi_dbm
- platform: uptime
name: ${upper_devicename} Uptime
# internal LED
light:
- platform: monochromatic
output: builtin_led
name: ${upper_devicename} Led
id: led1
output:
- platform: ledc
pin: 10
inverted: true
id: builtin_led
#############################################
### Currently causes an error with compilation
##
# internal IR Transmitter
# remote_transmitter:
# - pin:
# number: GPIO9
# carrier_duty_percent: 50%
# id: internal
##
###
#############################################
spi:
clk_pin: GPIO13
mosi_pin: GPIO15
i2c:
- id: bus_a
sda: GPIO21
scl: GPIO22
scan: True
font:
- file: 'fonts/arial.ttf'
id: font1
size: 8
# builtin 80x160 TFT
display:
- platform: st7735
model: "INITR_MINI160X80"
cs_pin: GPIO5
dc_pin: GPIO23
reset_pin: GPIO18
rotation: 270
device_width: 128
device_height: 160
col_start: 0
row_start: 0
eight_bit_color: true
update_interval: 5s
lambda: |-
it.print(80, 0, id(font1), TextAlign::TOP_CENTER, "M5Stick Test");

View File

@@ -1,143 +0,0 @@
esphome:
name: m5tough
esp32:
board: m5stack-core2
framework:
type: arduino
# Enable logging
logger:
# Enable Home Assistant API
api:
# Enable over the air programming
ota:
# Enable WiFi connection
wifi:
ssid: !secret wifi_ssid
password: !secret wifi_pass
# Include the required components for this device
external_components:
- source: github://paulchilton/esphome-axp192
components: [axp192]
# SPI bus
spi:
clk_pin: GPIO18
mosi_pin: GPIO23
miso_pin: GPIO38
# I2C bus
i2c:
- id: bus_a
sda: GPIO21
scl: GPIO22
# Define sensors
sensor:
- platform: axp192
model: M5TOUGH
address: 0x34
i2c_id: bus_a
update_interval: 3s
brightness: 75%
- platform: uptime
name: "Uptime"
- platform: wifi_signal
name: "WiFi Signal"
update_interval: 60s
id: wifi_strength
text_sensor:
- platform: wifi_info
ip_address:
id: ip_address
# M5 Tough has a built in speaker which can be used by home assistant as a media player
media_player:
- platform: i2s_audio
name: M5TOUGH I2S Media Player
dac_type: external
i2s_lrclk_pin: GPIO0
i2s_dout_pin: GPIO2
i2s_bclk_pin: GPIO12
mode: stereo
# Setup a simple input that triggers when the screen is touched anywhere
binary_sensor:
- platform: gpio
id: touchscreen_pressed
name: Touch Screen Pressed
pin:
number: 39
on_press:
then:
- logger.log: "Screen was pressed"
# Also, send an event to home assistant api to indicate someone has pressed the screen.
- homeassistant.event:
event: esphome.screen_pressed
data:
message: Toughscreen was pressed
# Fonts used on the display
font:
- file: "gfonts://Roboto"
id: title_font
size: 38
- file: "gfonts://Roboto"
id: large_font
size: 42
- file: "gfonts://Roboto"
id: mid_font
size: 28
- file: "gfonts://Roboto"
id: small_font
size: 18
# Colours used on the display
color:
- id: color_white
red: 100%
green: 100%
blue: 100%
- id: color_grey
red: 30%
green: 30%
blue: 40%
- id: color_red
red: 100%
green: 3%
blue: 5%
# Display definition with a simple header and footer showing WiFi connection details
display:
- platform: ili9341
# 320x240
model: M5STACK
cs_pin: GPIO5
dc_pin: GPIO15
lambda: |-
// Header
it.print(160, 0, id(title_font), id(color_white), TextAlign::TOP_CENTER, "Hello World");
it.line(0, 50, it.get_width(), 50, id(color_grey));
// Footer
it.line(0, 215, it.get_width(), 215, id(color_grey));
if(isnan(id(wifi_strength).state) == 0){
it.printf(240, 220, id(small_font), id(color_white), TextAlign::TOP_LEFT, "%.1fdB", id(wifi_strength).state);
}
else
{
it.printf(160, 220, id(small_font), id(color_red), TextAlign::TOP_CENTER, "Disconnected");
}
it.printf(10, 220, id(small_font), id(color_white), TextAlign::TOP_LEFT, "%s", id(ip_address).state.c_str());