Compare commits

..

3 Commits

Author SHA1 Message Date
J. Nick Koston
50132038a2 Merge remote-tracking branch 'upstream/dev' into beta_premerge 2026-02-09 16:46:16 -06:00
J. Nick Koston
56ba59a41f Merge remote-tracking branch 'upstream/dev' into beta_premerge 2026-02-09 16:45:21 -06:00
J. Nick Koston
61746bd4b3 DNM: Test merge to beta 2026-02-07 17:29:45 -06:00
180 changed files with 1793 additions and 5742 deletions

View File

@@ -1 +1 @@
74867fc82764102ce1275ea2bc43e3aeee7619679537c6db61114a33342bb4c7
37ec8d5a343c8d0a485fd2118cbdabcbccd7b9bca197e4a392be75087974dced

View File

@@ -23,7 +23,7 @@ RUN if command -v apk > /dev/null; then \
ENV PIP_DISABLE_PIP_VERSION_CHECK=1
RUN pip install --no-cache-dir -U pip uv==0.10.1
RUN pip install --no-cache-dir -U pip uv==0.6.14
COPY requirements.txt /

View File

@@ -5,7 +5,6 @@ from __future__ import annotations
from collections import defaultdict
from collections.abc import Callable
import heapq
import json
from operator import itemgetter
import sys
from typing import TYPE_CHECKING
@@ -541,28 +540,6 @@ class MemoryAnalyzerCLI(MemoryAnalyzer):
return "\n".join(lines)
def to_json(self) -> str:
"""Export analysis results as JSON."""
data = {
"components": {
name: {
"text": mem.text_size,
"rodata": mem.rodata_size,
"data": mem.data_size,
"bss": mem.bss_size,
"flash_total": mem.flash_total,
"ram_total": mem.ram_total,
"symbol_count": mem.symbol_count,
}
for name, mem in self.components.items()
},
"totals": {
"flash": sum(c.flash_total for c in self.components.values()),
"ram": sum(c.ram_total for c in self.components.values()),
},
}
return json.dumps(data, indent=2)
def dump_uncategorized_symbols(self, output_file: str | None = None) -> None:
"""Dump uncategorized symbols for analysis."""
# Sort by size descending

View File

@@ -11,7 +11,6 @@
from esphome.cpp_generator import ( # noqa: F401
ArrayInitializer,
Expression,
FlashStringLiteral,
LineComment,
LogStringLiteral,
MockObj,

View File

@@ -524,24 +524,24 @@ async def homeassistant_service_to_code(
cg.add_define("USE_API_HOMEASSISTANT_SERVICES")
serv = await cg.get_variable(config[CONF_ID])
var = cg.new_Pvariable(action_id, template_arg, serv, False)
templ = await cg.templatable(config[CONF_ACTION], args, cg.std_string)
templ = await cg.templatable(config[CONF_ACTION], args, None)
cg.add(var.set_service(templ))
# Initialize FixedVectors with exact sizes from config
cg.add(var.init_data(len(config[CONF_DATA])))
for key, value in config[CONF_DATA].items():
templ = await cg.templatable(value, args, cg.std_string)
cg.add(var.add_data(cg.FlashStringLiteral(key), templ))
templ = await cg.templatable(value, args, None)
cg.add(var.add_data(key, templ))
cg.add(var.init_data_template(len(config[CONF_DATA_TEMPLATE])))
for key, value in config[CONF_DATA_TEMPLATE].items():
templ = await cg.templatable(value, args, cg.std_string)
cg.add(var.add_data_template(cg.FlashStringLiteral(key), templ))
templ = await cg.templatable(value, args, None)
cg.add(var.add_data_template(key, templ))
cg.add(var.init_variables(len(config[CONF_VARIABLES])))
for key, value in config[CONF_VARIABLES].items():
templ = await cg.templatable(value, args, cg.std_string)
cg.add(var.add_variable(cg.FlashStringLiteral(key), templ))
templ = await cg.templatable(value, args, None)
cg.add(var.add_variable(key, templ))
if on_error := config.get(CONF_ON_ERROR):
cg.add_define("USE_API_HOMEASSISTANT_ACTION_RESPONSES")
@@ -609,24 +609,24 @@ async def homeassistant_event_to_code(config, action_id, template_arg, args):
cg.add_define("USE_API_HOMEASSISTANT_SERVICES")
serv = await cg.get_variable(config[CONF_ID])
var = cg.new_Pvariable(action_id, template_arg, serv, True)
templ = await cg.templatable(config[CONF_EVENT], args, cg.std_string)
templ = await cg.templatable(config[CONF_EVENT], args, None)
cg.add(var.set_service(templ))
# Initialize FixedVectors with exact sizes from config
cg.add(var.init_data(len(config[CONF_DATA])))
for key, value in config[CONF_DATA].items():
templ = await cg.templatable(value, args, cg.std_string)
cg.add(var.add_data(cg.FlashStringLiteral(key), templ))
templ = await cg.templatable(value, args, None)
cg.add(var.add_data(key, templ))
cg.add(var.init_data_template(len(config[CONF_DATA_TEMPLATE])))
for key, value in config[CONF_DATA_TEMPLATE].items():
templ = await cg.templatable(value, args, cg.std_string)
cg.add(var.add_data_template(cg.FlashStringLiteral(key), templ))
templ = await cg.templatable(value, args, None)
cg.add(var.add_data_template(key, templ))
cg.add(var.init_variables(len(config[CONF_VARIABLES])))
for key, value in config[CONF_VARIABLES].items():
templ = await cg.templatable(value, args, cg.std_string)
cg.add(var.add_variable(cg.FlashStringLiteral(key), templ))
templ = await cg.templatable(value, args, None)
cg.add(var.add_variable(key, templ))
return var
@@ -649,11 +649,11 @@ async def homeassistant_tag_scanned_to_code(config, action_id, template_arg, arg
cg.add_define("USE_API_HOMEASSISTANT_SERVICES")
serv = await cg.get_variable(config[CONF_ID])
var = cg.new_Pvariable(action_id, template_arg, serv, True)
cg.add(var.set_service(cg.FlashStringLiteral("esphome.tag_scanned")))
cg.add(var.set_service("esphome.tag_scanned"))
# Initialize FixedVector with exact size (1 data field)
cg.add(var.init_data(1))
templ = await cg.templatable(config[CONF_TAG], args, cg.std_string)
cg.add(var.add_data(cg.FlashStringLiteral("tag_id"), templ))
cg.add(var.add_data("tag_id", templ))
return var

View File

@@ -1155,11 +1155,9 @@ enum WaterHeaterCommandHasField {
WATER_HEATER_COMMAND_HAS_NONE = 0;
WATER_HEATER_COMMAND_HAS_MODE = 1;
WATER_HEATER_COMMAND_HAS_TARGET_TEMPERATURE = 2;
WATER_HEATER_COMMAND_HAS_STATE = 4 [deprecated=true];
WATER_HEATER_COMMAND_HAS_STATE = 4;
WATER_HEATER_COMMAND_HAS_TARGET_TEMPERATURE_LOW = 8;
WATER_HEATER_COMMAND_HAS_TARGET_TEMPERATURE_HIGH = 16;
WATER_HEATER_COMMAND_HAS_ON_STATE = 32;
WATER_HEATER_COMMAND_HAS_AWAY_STATE = 64;
}
message WaterHeaterCommandRequest {

View File

@@ -133,8 +133,8 @@ void APIConnection::start() {
return;
}
// Initialize client name with peername (IP address) until Hello message provides actual name
char peername[socket::SOCKADDR_STR_LEN];
this->helper_->set_client_name(this->helper_->get_peername_to(peername), strlen(peername));
const char *peername = this->helper_->get_client_peername();
this->helper_->set_client_name(peername, strlen(peername));
}
APIConnection::~APIConnection() {
@@ -179,8 +179,8 @@ void APIConnection::begin_iterator_(ActiveIterator type) {
void APIConnection::loop() {
if (this->flags_.next_close) {
// requested a disconnect - don't close socket here, let APIServer::loop() do it
// so getpeername() still works for the disconnect trigger
// requested a disconnect
this->helper_->close();
this->flags_.remove = true;
return;
}
@@ -219,8 +219,35 @@ void APIConnection::loop() {
this->process_batch_();
}
if (this->active_iterator_ != ActiveIterator::NONE) {
this->process_active_iterator_();
switch (this->active_iterator_) {
case ActiveIterator::LIST_ENTITIES:
if (this->iterator_storage_.list_entities.completed()) {
this->destroy_active_iterator_();
if (this->flags_.state_subscription) {
this->begin_iterator_(ActiveIterator::INITIAL_STATE);
}
} else {
this->process_iterator_batch_(this->iterator_storage_.list_entities);
}
break;
case ActiveIterator::INITIAL_STATE:
if (this->iterator_storage_.initial_state.completed()) {
this->destroy_active_iterator_();
// Process any remaining batched messages immediately
if (!this->deferred_batch_.empty()) {
this->process_batch_();
}
// Now that everything is sent, enable immediate sending for future state changes
this->flags_.should_try_send_immediately = true;
// Release excess memory from buffers that grew during initial sync
this->deferred_batch_.release_buffer();
this->helper_->release_buffers();
} else {
this->process_iterator_batch_(this->iterator_storage_.initial_state);
}
break;
case ActiveIterator::NONE:
break;
}
if (this->flags_.sent_ping) {
@@ -256,49 +283,6 @@ void APIConnection::loop() {
#endif
}
void APIConnection::process_active_iterator_() {
// Caller ensures active_iterator_ != NONE
if (this->active_iterator_ == ActiveIterator::LIST_ENTITIES) {
if (this->iterator_storage_.list_entities.completed()) {
this->destroy_active_iterator_();
if (this->flags_.state_subscription) {
this->begin_iterator_(ActiveIterator::INITIAL_STATE);
}
} else {
this->process_iterator_batch_(this->iterator_storage_.list_entities);
}
} else { // INITIAL_STATE
if (this->iterator_storage_.initial_state.completed()) {
this->destroy_active_iterator_();
// Process any remaining batched messages immediately
if (!this->deferred_batch_.empty()) {
this->process_batch_();
}
// Now that everything is sent, enable immediate sending for future state changes
this->flags_.should_try_send_immediately = true;
// Release excess memory from buffers that grew during initial sync
this->deferred_batch_.release_buffer();
this->helper_->release_buffers();
} else {
this->process_iterator_batch_(this->iterator_storage_.initial_state);
}
}
}
void APIConnection::process_iterator_batch_(ComponentIterator &iterator) {
size_t initial_size = this->deferred_batch_.size();
size_t max_batch = this->get_max_batch_size_();
while (!iterator.completed() && (this->deferred_batch_.size() - initial_size) < max_batch) {
iterator.advance();
}
// If the batch is full, process it immediately
// Note: iterator.advance() already calls schedule_batch_() via schedule_message_()
if (this->deferred_batch_.size() >= max_batch) {
this->process_batch_();
}
}
bool APIConnection::send_disconnect_response_() {
// remote initiated disconnect_client
// don't close yet, we still need to send the disconnect response
@@ -309,8 +293,7 @@ bool APIConnection::send_disconnect_response_() {
return this->send_message(resp, DisconnectResponse::MESSAGE_TYPE);
}
void APIConnection::on_disconnect_response() {
// Don't close socket here, let APIServer::loop() do it
// so getpeername() still works for the disconnect trigger
this->helper_->close();
this->flags_.remove = true;
}
@@ -1360,12 +1343,8 @@ void APIConnection::on_water_heater_command_request(const WaterHeaterCommandRequ
call.set_target_temperature_low(msg.target_temperature_low);
if (msg.has_fields & enums::WATER_HEATER_COMMAND_HAS_TARGET_TEMPERATURE_HIGH)
call.set_target_temperature_high(msg.target_temperature_high);
if ((msg.has_fields & enums::WATER_HEATER_COMMAND_HAS_AWAY_STATE) ||
(msg.has_fields & enums::WATER_HEATER_COMMAND_HAS_STATE)) {
if (msg.has_fields & enums::WATER_HEATER_COMMAND_HAS_STATE) {
call.set_away((msg.state & water_heater::WATER_HEATER_STATE_AWAY) != 0);
}
if ((msg.has_fields & enums::WATER_HEATER_COMMAND_HAS_ON_STATE) ||
(msg.has_fields & enums::WATER_HEATER_COMMAND_HAS_STATE)) {
call.set_on((msg.state & water_heater::WATER_HEATER_STATE_ON) != 0);
}
call.perform();
@@ -1486,11 +1465,8 @@ void APIConnection::complete_authentication_() {
this->flags_.connection_state = static_cast<uint8_t>(ConnectionState::AUTHENTICATED);
this->log_client_(ESPHOME_LOG_LEVEL_DEBUG, LOG_STR("connected"));
#ifdef USE_API_CLIENT_CONNECTED_TRIGGER
{
char peername[socket::SOCKADDR_STR_LEN];
this->parent_->get_client_connected_trigger()->trigger(std::string(this->helper_->get_client_name()),
std::string(this->helper_->get_peername_to(peername)));
}
this->parent_->get_client_connected_trigger()->trigger(std::string(this->helper_->get_client_name()),
std::string(this->helper_->get_client_peername()));
#endif
#ifdef USE_HOMEASSISTANT_TIME
if (homeassistant::global_homeassistant_time != nullptr) {
@@ -1509,9 +1485,8 @@ bool APIConnection::send_hello_response_(const HelloRequest &msg) {
this->helper_->set_client_name(msg.client_info.c_str(), msg.client_info.size());
this->client_api_version_major_ = msg.api_version_major;
this->client_api_version_minor_ = msg.api_version_minor;
char peername[socket::SOCKADDR_STR_LEN];
ESP_LOGV(TAG, "Hello from client: '%s' | %s | API Version %" PRIu32 ".%" PRIu32, this->helper_->get_client_name(),
this->helper_->get_peername_to(peername), this->client_api_version_major_, this->client_api_version_minor_);
this->helper_->get_client_peername(), this->client_api_version_major_, this->client_api_version_minor_);
HelloResponse resp;
resp.api_version_major = 1;
@@ -1859,8 +1834,7 @@ void APIConnection::on_no_setup_connection() {
this->log_client_(ESPHOME_LOG_LEVEL_DEBUG, LOG_STR("no connection setup"));
}
void APIConnection::on_fatal_error() {
// Don't close socket here - keep it open so getpeername() works for logging
// Socket will be closed when client is removed from the list in APIServer::loop()
this->helper_->close();
this->flags_.remove = true;
}
@@ -1921,6 +1895,10 @@ bool APIConnection::schedule_batch_() {
}
void APIConnection::process_batch_() {
// Ensure MessageInfo remains trivially destructible for our placement new approach
static_assert(std::is_trivially_destructible<MessageInfo>::value,
"MessageInfo must remain trivially destructible with this placement-new approach");
if (this->deferred_batch_.empty()) {
this->flags_.batch_scheduled = false;
return;
@@ -1945,10 +1923,6 @@ void APIConnection::process_batch_() {
for (size_t i = 0; i < num_items; i++) {
total_estimated_size += this->deferred_batch_[i].estimated_size;
}
// Clamp to MAX_BATCH_PACKET_SIZE — we won't send more than that per batch
if (total_estimated_size > MAX_BATCH_PACKET_SIZE) {
total_estimated_size = MAX_BATCH_PACKET_SIZE;
}
this->prepare_first_message_buffer(shared_buf, header_padding, total_estimated_size);
@@ -1972,20 +1946,7 @@ void APIConnection::process_batch_() {
return;
}
// Multi-message path — heavy stack frame isolated in separate noinline function
this->process_batch_multi_(shared_buf, num_items, header_padding, footer_size);
}
// Separated from process_batch_() so the single-message fast path gets a minimal
// stack frame without the MAX_MESSAGES_PER_BATCH * sizeof(MessageInfo) array.
void APIConnection::process_batch_multi_(std::vector<uint8_t> &shared_buf, size_t num_items, uint8_t header_padding,
uint8_t footer_size) {
// Ensure MessageInfo remains trivially destructible for our placement new approach
static_assert(std::is_trivially_destructible<MessageInfo>::value,
"MessageInfo must remain trivially destructible with this placement-new approach");
const size_t messages_to_process = std::min(num_items, MAX_MESSAGES_PER_BATCH);
const uint8_t frame_overhead = header_padding + footer_size;
size_t messages_to_process = std::min(num_items, MAX_MESSAGES_PER_BATCH);
// Stack-allocated array for message info
alignas(MessageInfo) char message_info_storage[MAX_MESSAGES_PER_BATCH * sizeof(MessageInfo)];
@@ -2012,7 +1973,7 @@ void APIConnection::process_batch_multi_(std::vector<uint8_t> &shared_buf, size_
// Message was encoded successfully
// payload_size is header_padding + actual payload size + footer_size
uint16_t proto_payload_size = payload_size - frame_overhead;
uint16_t proto_payload_size = payload_size - header_padding - footer_size;
// Use placement new to construct MessageInfo in pre-allocated stack array
// This avoids default-constructing all MAX_MESSAGES_PER_BATCH elements
// Explicit destruction is not needed because MessageInfo is trivially destructible,
@@ -2028,38 +1989,42 @@ void APIConnection::process_batch_multi_(std::vector<uint8_t> &shared_buf, size_
current_offset = shared_buf.size() + footer_size;
}
if (items_processed > 0) {
// Add footer space for the last message (for Noise protocol MAC)
if (footer_size > 0) {
shared_buf.resize(shared_buf.size() + footer_size);
}
// Send all collected messages
APIError err = this->helper_->write_protobuf_messages(ProtoWriteBuffer{&shared_buf},
std::span<const MessageInfo>(message_info, items_processed));
if (err != APIError::OK && err != APIError::WOULD_BLOCK) {
this->fatal_error_with_log_(LOG_STR("Batch write failed"), err);
}
#ifdef HAS_PROTO_MESSAGE_DUMP
// Log messages after send attempt for VV debugging
// It's safe to use the buffer for logging at this point regardless of send result
for (size_t i = 0; i < items_processed; i++) {
const auto &item = this->deferred_batch_[i];
this->log_batch_item_(item);
}
#endif
// Partial batch — remove processed items and reschedule
if (items_processed < this->deferred_batch_.size()) {
this->deferred_batch_.remove_front(items_processed);
this->schedule_batch_();
return;
}
if (items_processed == 0) {
this->deferred_batch_.clear();
return;
}
// All items processed (or none could be processed)
this->clear_batch_();
// Add footer space for the last message (for Noise protocol MAC)
if (footer_size > 0) {
shared_buf.resize(shared_buf.size() + footer_size);
}
// Send all collected messages
APIError err = this->helper_->write_protobuf_messages(ProtoWriteBuffer{&shared_buf},
std::span<const MessageInfo>(message_info, items_processed));
if (err != APIError::OK && err != APIError::WOULD_BLOCK) {
this->fatal_error_with_log_(LOG_STR("Batch write failed"), err);
}
#ifdef HAS_PROTO_MESSAGE_DUMP
// Log messages after send attempt for VV debugging
// It's safe to use the buffer for logging at this point regardless of send result
for (size_t i = 0; i < items_processed; i++) {
const auto &item = this->deferred_batch_[i];
this->log_batch_item_(item);
}
#endif
// Handle remaining items more efficiently
if (items_processed < this->deferred_batch_.size()) {
// Remove processed items from the beginning
this->deferred_batch_.remove_front(items_processed);
// Reschedule for remaining items
this->schedule_batch_();
} else {
// All items processed
this->clear_batch_();
}
}
// Dispatch message encoding based on message_type
@@ -2226,14 +2191,12 @@ void APIConnection::process_state_subscriptions_() {
#endif // USE_API_HOMEASSISTANT_STATES
void APIConnection::log_client_(int level, const LogString *message) {
char peername[socket::SOCKADDR_STR_LEN];
esp_log_printf_(level, TAG, __LINE__, ESPHOME_LOG_FORMAT("%s (%s): %s"), this->helper_->get_client_name(),
this->helper_->get_peername_to(peername), LOG_STR_ARG(message));
this->helper_->get_client_peername(), LOG_STR_ARG(message));
}
void APIConnection::log_warning_(const LogString *message, APIError err) {
char peername[socket::SOCKADDR_STR_LEN];
ESP_LOGW(TAG, "%s (%s): %s %s errno=%d", this->helper_->get_client_name(), this->helper_->get_peername_to(peername),
ESP_LOGW(TAG, "%s (%s): %s %s errno=%d", this->helper_->get_client_name(), this->helper_->get_client_peername(),
LOG_STR_ARG(message), LOG_STR_ARG(api_error_to_logstr(err)), errno);
}

View File

@@ -15,10 +15,6 @@
#include <limits>
#include <vector>
namespace esphome {
class ComponentIterator;
} // namespace esphome
namespace esphome::api {
// Keepalive timeout in milliseconds
@@ -280,10 +276,8 @@ class APIConnection final : public APIServerConnectionBase {
bool send_buffer(ProtoWriteBuffer buffer, uint8_t message_type) override;
const char *get_name() const { return this->helper_->get_client_name(); }
/// Get peer name (IP address) into caller-provided buffer, returns buf for convenience
const char *get_peername_to(std::span<char, socket::SOCKADDR_STR_LEN> buf) const {
return this->helper_->get_peername_to(buf);
}
/// Get peer name (IP address) - cached at connection init time
const char *get_peername() const { return this->helper_->get_client_peername(); }
protected:
// Helper function to handle authentication completion
@@ -370,13 +364,20 @@ class APIConnection final : public APIServerConnectionBase {
return this->client_supports_api_version(1, 14) ? MAX_INITIAL_PER_BATCH : MAX_INITIAL_PER_BATCH_LEGACY;
}
// Process active iterator (list_entities/initial_state) during connection setup.
// Extracted from loop() — only runs during initial handshake, NONE in steady state.
void __attribute__((noinline)) process_active_iterator_();
// Helper method to process multiple entities from an iterator in a batch
template<typename Iterator> void process_iterator_batch_(Iterator &iterator) {
size_t initial_size = this->deferred_batch_.size();
size_t max_batch = this->get_max_batch_size_();
while (!iterator.completed() && (this->deferred_batch_.size() - initial_size) < max_batch) {
iterator.advance();
}
// Helper method to process multiple entities from an iterator in a batch.
// Takes ComponentIterator base class reference to avoid duplicate template instantiations.
void process_iterator_batch_(ComponentIterator &iterator);
// If the batch is full, process it immediately
// Note: iterator.advance() already calls schedule_batch_() via schedule_message_()
if (this->deferred_batch_.size() >= max_batch) {
this->process_batch_();
}
}
#ifdef USE_BINARY_SENSOR
static uint16_t try_send_binary_sensor_state(EntityBase *entity, APIConnection *conn, uint32_t remaining_size);
@@ -548,8 +549,8 @@ class APIConnection final : public APIServerConnectionBase {
batch_start_time = 0;
}
// Remove processed items from the front — noinline to keep memmove out of warm callers
void remove_front(size_t count) __attribute__((noinline)) { items.erase(items.begin(), items.begin() + count); }
// Remove processed items from the front
void remove_front(size_t count) { items.erase(items.begin(), items.begin() + count); }
bool empty() const { return items.empty(); }
size_t size() const { return items.size(); }
@@ -621,8 +622,6 @@ class APIConnection final : public APIServerConnectionBase {
bool schedule_batch_();
void process_batch_();
void process_batch_multi_(std::vector<uint8_t> &shared_buf, size_t num_items, uint8_t header_padding,
uint8_t footer_size) __attribute__((noinline));
void clear_batch_() {
this->deferred_batch_.clear();
this->flags_.batch_scheduled = false;

View File

@@ -16,12 +16,7 @@ static const char *const TAG = "api.frame_helper";
static constexpr size_t API_MAX_LOG_BYTES = 168;
#if ESPHOME_LOG_LEVEL >= ESPHOME_LOG_LEVEL_VERY_VERBOSE
#define HELPER_LOG(msg, ...) \
do { \
char peername_buf[socket::SOCKADDR_STR_LEN]; \
this->get_peername_to(peername_buf); \
ESP_LOGVV(TAG, "%s (%s): " msg, this->client_name_, peername_buf, ##__VA_ARGS__); \
} while (0)
#define HELPER_LOG(msg, ...) ESP_LOGVV(TAG, "%s (%s): " msg, this->client_name_, this->client_peername_, ##__VA_ARGS__)
#else
#define HELPER_LOG(msg, ...) ((void) 0)
#endif
@@ -245,20 +240,13 @@ APIError APIFrameHelper::try_send_tx_buf_() {
return APIError::OK; // All buffers sent successfully
}
const char *APIFrameHelper::get_peername_to(std::span<char, socket::SOCKADDR_STR_LEN> buf) const {
if (this->socket_) {
this->socket_->getpeername_to(buf);
} else {
buf[0] = '\0';
}
return buf.data();
}
APIError APIFrameHelper::init_common_() {
if (state_ != State::INITIALIZE || this->socket_ == nullptr) {
HELPER_LOG("Bad state for init %d", (int) state_);
return APIError::BAD_STATE;
}
// Cache peername now while socket is valid - needed for error logging after socket failure
this->socket_->getpeername_to(this->client_peername_);
int err = this->socket_->setblocking(false);
if (err != 0) {
state_ = State::FAILED;

View File

@@ -90,9 +90,8 @@ class APIFrameHelper {
// Get client name (null-terminated)
const char *get_client_name() const { return this->client_name_; }
// Get client peername/IP into caller-provided buffer (fetches on-demand from socket)
// Returns pointer to buf for convenience in printf-style calls
const char *get_peername_to(std::span<char, socket::SOCKADDR_STR_LEN> buf) const;
// Get client peername/IP (null-terminated, cached at init time for availability after socket failure)
const char *get_client_peername() const { return this->client_peername_; }
// Set client name from buffer with length (truncates if needed)
void set_client_name(const char *name, size_t len) {
size_t copy_len = std::min(len, sizeof(this->client_name_) - 1);
@@ -106,8 +105,6 @@ class APIFrameHelper {
bool can_write_without_blocking() { return this->state_ == State::DATA && this->tx_buf_count_ == 0; }
int getpeername(struct sockaddr *addr, socklen_t *addrlen) { return socket_->getpeername(addr, addrlen); }
APIError close() {
if (state_ == State::CLOSED)
return APIError::OK; // Already closed
state_ = State::CLOSED;
int err = this->socket_->close();
if (err == -1)
@@ -234,6 +231,8 @@ class APIFrameHelper {
// Client name buffer - stores name from Hello message or initial peername
char client_name_[CLIENT_INFO_NAME_MAX_LEN]{};
// Cached peername/IP address - captured at init time for availability after socket failure
char client_peername_[socket::SOCKADDR_STR_LEN]{};
// Group smaller types together
uint16_t rx_buf_len_ = 0;

View File

@@ -29,12 +29,7 @@ static constexpr size_t PROLOGUE_INIT_LEN = 12; // strlen("NoiseAPIInit")
static constexpr size_t API_MAX_LOG_BYTES = 168;
#if ESPHOME_LOG_LEVEL >= ESPHOME_LOG_LEVEL_VERY_VERBOSE
#define HELPER_LOG(msg, ...) \
do { \
char peername_buf[socket::SOCKADDR_STR_LEN]; \
this->get_peername_to(peername_buf); \
ESP_LOGVV(TAG, "%s (%s): " msg, this->client_name_, peername_buf, ##__VA_ARGS__); \
} while (0)
#define HELPER_LOG(msg, ...) ESP_LOGVV(TAG, "%s (%s): " msg, this->client_name_, this->client_peername_, ##__VA_ARGS__)
#else
#define HELPER_LOG(msg, ...) ((void) 0)
#endif

View File

@@ -21,12 +21,7 @@ static const char *const TAG = "api.plaintext";
static constexpr size_t API_MAX_LOG_BYTES = 168;
#if ESPHOME_LOG_LEVEL >= ESPHOME_LOG_LEVEL_VERY_VERBOSE
#define HELPER_LOG(msg, ...) \
do { \
char peername_buf[socket::SOCKADDR_STR_LEN]; \
this->get_peername_to(peername_buf); \
ESP_LOGVV(TAG, "%s (%s): " msg, this->client_name_, peername_buf, ##__VA_ARGS__); \
} while (0)
#define HELPER_LOG(msg, ...) ESP_LOGVV(TAG, "%s (%s): " msg, this->client_name_, this->client_peername_, ##__VA_ARGS__)
#else
#define HELPER_LOG(msg, ...) ((void) 0)
#endif

View File

@@ -147,8 +147,6 @@ enum WaterHeaterCommandHasField : uint32_t {
WATER_HEATER_COMMAND_HAS_STATE = 4,
WATER_HEATER_COMMAND_HAS_TARGET_TEMPERATURE_LOW = 8,
WATER_HEATER_COMMAND_HAS_TARGET_TEMPERATURE_HIGH = 16,
WATER_HEATER_COMMAND_HAS_ON_STATE = 32,
WATER_HEATER_COMMAND_HAS_AWAY_STATE = 64,
};
#ifdef USE_NUMBER
enum NumberMode : uint32_t {

View File

@@ -385,10 +385,6 @@ const char *proto_enum_to_string<enums::WaterHeaterCommandHasField>(enums::Water
return "WATER_HEATER_COMMAND_HAS_TARGET_TEMPERATURE_LOW";
case enums::WATER_HEATER_COMMAND_HAS_TARGET_TEMPERATURE_HIGH:
return "WATER_HEATER_COMMAND_HAS_TARGET_TEMPERATURE_HIGH";
case enums::WATER_HEATER_COMMAND_HAS_ON_STATE:
return "WATER_HEATER_COMMAND_HAS_ON_STATE";
case enums::WATER_HEATER_COMMAND_HAS_AWAY_STATE:
return "WATER_HEATER_COMMAND_HAS_AWAY_STATE";
default:
return "UNKNOWN";
}

View File

@@ -117,7 +117,37 @@ void APIServer::setup() {
void APIServer::loop() {
// Accept new clients only if the socket exists and has incoming connections
if (this->socket_ && this->socket_->ready()) {
this->accept_new_connections_();
while (true) {
struct sockaddr_storage source_addr;
socklen_t addr_len = sizeof(source_addr);
auto sock = this->socket_->accept_loop_monitored((struct sockaddr *) &source_addr, &addr_len);
if (!sock)
break;
char peername[socket::SOCKADDR_STR_LEN];
sock->getpeername_to(peername);
// Check if we're at the connection limit
if (this->clients_.size() >= this->max_connections_) {
ESP_LOGW(TAG, "Max connections (%d), rejecting %s", this->max_connections_, peername);
// Immediately close - socket destructor will handle cleanup
sock.reset();
continue;
}
ESP_LOGD(TAG, "Accept %s", peername);
auto *conn = new APIConnection(std::move(sock), this);
this->clients_.emplace_back(conn);
conn->start();
// First client connected - clear warning and update timestamp
if (this->clients_.size() == 1 && this->reboot_timeout_ != 0) {
this->status_clear_warning();
this->last_connected_ = App.get_loop_component_start_time();
}
}
}
if (this->clients_.empty()) {
@@ -148,84 +178,42 @@ void APIServer::loop() {
while (client_index < this->clients_.size()) {
auto &client = this->clients_[client_index];
if (client->flags_.remove) {
// Rare case: handle disconnection (don't increment - swapped element needs processing)
this->remove_client_(client_index);
} else {
if (!client->flags_.remove) {
// Common case: process active client
client->loop();
client_index++;
}
}
}
void APIServer::remove_client_(size_t client_index) {
auto &client = this->clients_[client_index];
#ifdef USE_API_USER_DEFINED_ACTION_RESPONSES
this->unregister_active_action_calls_for_connection(client.get());
#endif
ESP_LOGV(TAG, "Remove connection %s", client->get_name());
#ifdef USE_API_CLIENT_DISCONNECTED_TRIGGER
// Save client info before closing socket and removal for the trigger
char peername_buf[socket::SOCKADDR_STR_LEN];
std::string client_name(client->get_name());
std::string client_peername(client->get_peername_to(peername_buf));
#endif
// Close socket now (was deferred from on_fatal_error to allow getpeername)
client->helper_->close();
// Swap with the last element and pop (avoids expensive vector shifts)
if (client_index < this->clients_.size() - 1) {
std::swap(this->clients_[client_index], this->clients_.back());
}
this->clients_.pop_back();
// Last client disconnected - set warning and start tracking for reboot timeout
if (this->clients_.empty() && this->reboot_timeout_ != 0) {
this->status_set_warning();
this->last_connected_ = App.get_loop_component_start_time();
}
#ifdef USE_API_CLIENT_DISCONNECTED_TRIGGER
// Fire trigger after client is removed so api.connected reflects the true state
this->client_disconnected_trigger_.trigger(client_name, client_peername);
#endif
}
void APIServer::accept_new_connections_() {
while (true) {
struct sockaddr_storage source_addr;
socklen_t addr_len = sizeof(source_addr);
auto sock = this->socket_->accept_loop_monitored((struct sockaddr *) &source_addr, &addr_len);
if (!sock)
break;
char peername[socket::SOCKADDR_STR_LEN];
sock->getpeername_to(peername);
// Check if we're at the connection limit
if (this->clients_.size() >= this->max_connections_) {
ESP_LOGW(TAG, "Max connections (%d), rejecting %s", this->max_connections_, peername);
// Immediately close - socket destructor will handle cleanup
sock.reset();
continue;
}
ESP_LOGD(TAG, "Accept %s", peername);
// Rare case: handle disconnection
#ifdef USE_API_USER_DEFINED_ACTION_RESPONSES
this->unregister_active_action_calls_for_connection(client.get());
#endif
ESP_LOGV(TAG, "Remove connection %s", client->get_name());
auto *conn = new APIConnection(std::move(sock), this);
this->clients_.emplace_back(conn);
conn->start();
#ifdef USE_API_CLIENT_DISCONNECTED_TRIGGER
// Save client info before removal for the trigger
std::string client_name(client->get_name());
std::string client_peername(client->get_peername());
#endif
// First client connected - clear warning and update timestamp
if (this->clients_.size() == 1 && this->reboot_timeout_ != 0) {
this->status_clear_warning();
// Swap with the last element and pop (avoids expensive vector shifts)
if (client_index < this->clients_.size() - 1) {
std::swap(this->clients_[client_index], this->clients_.back());
}
this->clients_.pop_back();
// Last client disconnected - set warning and start tracking for reboot timeout
if (this->clients_.empty() && this->reboot_timeout_ != 0) {
this->status_set_warning();
this->last_connected_ = App.get_loop_component_start_time();
}
#ifdef USE_API_CLIENT_DISCONNECTED_TRIGGER
// Fire trigger after client is removed so api.connected reflects the true state
this->client_disconnected_trigger_.trigger(client_name, client_peername);
#endif
// Don't increment client_index since we need to process the swapped element
}
}

View File

@@ -234,11 +234,6 @@ class APIServer : public Component,
#endif
protected:
// Accept incoming socket connections. Only called when socket has pending connections.
void __attribute__((noinline)) accept_new_connections_();
// Remove a disconnected client by index. Swaps with last element and pops.
void __attribute__((noinline)) remove_client_(size_t client_index);
#ifdef USE_API_NOISE
bool update_noise_psk_(const SavedNoisePsk &new_psk, const LogString *save_log_msg, const LogString *fail_log_msg,
const psk_t &active_psk, bool make_active);

View File

@@ -128,20 +128,6 @@ template<typename... Ts> class HomeAssistantServiceCallAction : public Action<Ts
this->add_kv_(this->variables_, key, std::forward<V>(value));
}
#ifdef USE_ESP8266
// On ESP8266, ESPHOME_F() returns __FlashStringHelper* (PROGMEM pointer).
// Store as const char* — populate_service_map copies from PROGMEM at play() time.
template<typename V> void add_data(const __FlashStringHelper *key, V &&value) {
this->add_kv_(this->data_, reinterpret_cast<const char *>(key), std::forward<V>(value));
}
template<typename V> void add_data_template(const __FlashStringHelper *key, V &&value) {
this->add_kv_(this->data_template_, reinterpret_cast<const char *>(key), std::forward<V>(value));
}
template<typename V> void add_variable(const __FlashStringHelper *key, V &&value) {
this->add_kv_(this->variables_, reinterpret_cast<const char *>(key), std::forward<V>(value));
}
#endif
#ifdef USE_API_HOMEASSISTANT_ACTION_RESPONSES
template<typename T> void set_response_template(T response_template) {
this->response_template_ = response_template;
@@ -233,31 +219,7 @@ template<typename... Ts> class HomeAssistantServiceCallAction : public Action<Ts
Ts... x) {
dest.init(source.size());
#ifdef USE_ESP8266
// On ESP8266, keys may be in PROGMEM (from ESPHOME_F in codegen) and
// FLASH_STRING values need copying via _P functions.
// Allocate storage for all keys + all values (2 entries per source item).
// strlen_P/memcpy_P handle both RAM and PROGMEM pointers safely.
value_storage.init(source.size() * 2);
for (auto &it : source) {
auto &kv = dest.emplace_back();
// Key: copy from possible PROGMEM
{
size_t key_len = strlen_P(it.key);
value_storage.push_back(std::string(key_len, '\0'));
memcpy_P(value_storage.back().data(), it.key, key_len);
kv.key = StringRef(value_storage.back());
}
// Value: value() handles FLASH_STRING via _P functions internally
value_storage.push_back(it.value.value(x...));
kv.value = StringRef(value_storage.back());
}
#else
// On non-ESP8266, strings are directly readable from flash-mapped memory.
// Count non-static strings to allocate exact storage needed.
// Count non-static strings to allocate exact storage needed
size_t lambda_count = 0;
for (const auto &it : source) {
if (!it.value.is_static_string()) {
@@ -271,15 +233,14 @@ template<typename... Ts> class HomeAssistantServiceCallAction : public Action<Ts
kv.key = StringRef(it.key);
if (it.value.is_static_string()) {
// Static string — pointer directly readable, zero allocation
// Static string from YAML - zero allocation
kv.value = StringRef(it.value.get_static_string());
} else {
// Lambda evaluate and store result
// Lambda evaluation - store result, reference it
value_storage.push_back(it.value.value(x...));
kv.value = StringRef(value_storage.back());
}
}
#endif
}
APIServer *parent_;

View File

@@ -94,6 +94,7 @@ class ListEntitiesIterator : public ComponentIterator {
bool on_update(update::UpdateEntity *entity) override;
#endif
bool on_end() override;
bool completed() { return this->state_ == IteratorState::NONE; }
protected:
APIConnection *client_;

View File

@@ -88,6 +88,7 @@ class InitialStateIterator : public ComponentIterator {
#ifdef USE_UPDATE
bool on_update(update::UpdateEntity *entity) override;
#endif
bool completed() { return this->state_ == IteratorState::NONE; }
protected:
APIConnection *client_;

View File

@@ -264,9 +264,9 @@ template<typename... Ts> class APIRespondAction : public Action<Ts...> {
// Build and send JSON response
json::JsonBuilder builder;
this->json_builder_(x..., builder.root());
auto json_buf = builder.serialize();
std::string json_str = builder.serialize();
this->parent_->send_action_response(call_id, success, StringRef(error_message),
reinterpret_cast<const uint8_t *>(json_buf.data()), json_buf.size());
reinterpret_cast<const uint8_t *>(json_str.data()), json_str.size());
return;
}
#endif

View File

@@ -1,6 +1,5 @@
#pragma once
#include <algorithm>
#include <cmath>
#include <limits>
#include "abstract_aqi_calculator.h"
@@ -15,11 +14,7 @@ class AQICalculator : public AbstractAQICalculator {
float pm2_5_index = calculate_index(pm2_5_value, PM2_5_GRID);
float pm10_0_index = calculate_index(pm10_0_value, PM10_0_GRID);
float aqi = std::max(pm2_5_index, pm10_0_index);
if (aqi < 0.0f) {
aqi = 0.0f;
}
return static_cast<uint16_t>(std::lround(aqi));
return static_cast<uint16_t>(std::round((pm2_5_index < pm10_0_index) ? pm10_0_index : pm2_5_index));
}
protected:
@@ -27,27 +22,13 @@ class AQICalculator : public AbstractAQICalculator {
static constexpr int INDEX_GRID[NUM_LEVELS][2] = {{0, 50}, {51, 100}, {101, 150}, {151, 200}, {201, 300}, {301, 500}};
static constexpr float PM2_5_GRID[NUM_LEVELS][2] = {
// clang-format off
{0.0f, 9.1f},
{9.1f, 35.5f},
{35.5f, 55.5f},
{55.5f, 125.5f},
{125.5f, 225.5f},
{225.5f, std::numeric_limits<float>::max()}
// clang-format on
};
static constexpr float PM2_5_GRID[NUM_LEVELS][2] = {{0.0f, 9.0f}, {9.1f, 35.4f},
{35.5f, 55.4f}, {55.5f, 125.4f},
{125.5f, 225.4f}, {225.5f, std::numeric_limits<float>::max()}};
static constexpr float PM10_0_GRID[NUM_LEVELS][2] = {
// clang-format off
{0.0f, 55.0f},
{55.0f, 155.0f},
{155.0f, 255.0f},
{255.0f, 355.0f},
{355.0f, 425.0f},
{425.0f, std::numeric_limits<float>::max()}
// clang-format on
};
static constexpr float PM10_0_GRID[NUM_LEVELS][2] = {{0.0f, 54.0f}, {55.0f, 154.0f},
{155.0f, 254.0f}, {255.0f, 354.0f},
{355.0f, 424.0f}, {425.0f, std::numeric_limits<float>::max()}};
static float calculate_index(float value, const float array[NUM_LEVELS][2]) {
int grid_index = get_grid_index(value, array);
@@ -64,10 +45,7 @@ class AQICalculator : public AbstractAQICalculator {
static int get_grid_index(float value, const float array[NUM_LEVELS][2]) {
for (int i = 0; i < NUM_LEVELS; i++) {
const bool in_range =
(value >= array[i][0]) && ((i == NUM_LEVELS - 1) ? (value <= array[i][1]) // last bucket inclusive
: (value < array[i][1])); // others exclusive on hi
if (in_range) {
if (value >= array[i][0] && value <= array[i][1]) {
return i;
}
}

View File

@@ -1,6 +1,5 @@
#pragma once
#include <algorithm>
#include <cmath>
#include <limits>
#include "abstract_aqi_calculator.h"
@@ -13,11 +12,7 @@ class CAQICalculator : public AbstractAQICalculator {
float pm2_5_index = calculate_index(pm2_5_value, PM2_5_GRID);
float pm10_0_index = calculate_index(pm10_0_value, PM10_0_GRID);
float aqi = std::max(pm2_5_index, pm10_0_index);
if (aqi < 0.0f) {
aqi = 0.0f;
}
return static_cast<uint16_t>(std::lround(aqi));
return static_cast<uint16_t>(std::round((pm2_5_index < pm10_0_index) ? pm10_0_index : pm2_5_index));
}
protected:
@@ -26,24 +21,10 @@ class CAQICalculator : public AbstractAQICalculator {
static constexpr int INDEX_GRID[NUM_LEVELS][2] = {{0, 25}, {26, 50}, {51, 75}, {76, 100}, {101, 400}};
static constexpr float PM2_5_GRID[NUM_LEVELS][2] = {
// clang-format off
{0.0f, 15.1f},
{15.1f, 30.1f},
{30.1f, 55.1f},
{55.1f, 110.1f},
{110.1f, std::numeric_limits<float>::max()}
// clang-format on
};
{0.0f, 15.0f}, {15.1f, 30.0f}, {30.1f, 55.0f}, {55.1f, 110.0f}, {110.1f, std::numeric_limits<float>::max()}};
static constexpr float PM10_0_GRID[NUM_LEVELS][2] = {
// clang-format off
{0.0f, 25.1f},
{25.1f, 50.1f},
{50.1f, 90.1f},
{90.1f, 180.1f},
{180.1f, std::numeric_limits<float>::max()}
// clang-format on
};
{0.0f, 25.0f}, {25.1f, 50.0f}, {50.1f, 90.0f}, {90.1f, 180.0f}, {180.1f, std::numeric_limits<float>::max()}};
static float calculate_index(float value, const float array[NUM_LEVELS][2]) {
int grid_index = get_grid_index(value, array);
@@ -61,10 +42,7 @@ class CAQICalculator : public AbstractAQICalculator {
static int get_grid_index(float value, const float array[NUM_LEVELS][2]) {
for (int i = 0; i < NUM_LEVELS; i++) {
const bool in_range =
(value >= array[i][0]) && ((i == NUM_LEVELS - 1) ? (value <= array[i][1]) // last bucket inclusive
: (value < array[i][1])); // others exclusive on hi
if (in_range) {
if (value >= array[i][0] && value <= array[i][1]) {
return i;
}
}

View File

@@ -3,7 +3,6 @@
#include "bedjet_hub.h"
#include "bedjet_child.h"
#include "bedjet_const.h"
#include "esphome/components/esp32_ble/ble_uuid.h"
#include "esphome/core/application.h"
#include <cinttypes>

View File

@@ -159,10 +159,6 @@ BK72XX_BOARD_PINS = {
"A0": 23,
},
"cbu": {
"SPI0_CS": 15,
"SPI0_MISO": 17,
"SPI0_MOSI": 16,
"SPI0_SCK": 14,
"WIRE1_SCL": 20,
"WIRE1_SDA": 21,
"WIRE2_SCL": 0,
@@ -231,10 +227,6 @@ BK72XX_BOARD_PINS = {
"A0": 23,
},
"generic-bk7231t-qfn32-tuya": {
"SPI0_CS": 15,
"SPI0_MISO": 17,
"SPI0_MOSI": 16,
"SPI0_SCK": 14,
"WIRE1_SCL": 20,
"WIRE1_SDA": 21,
"WIRE2_SCL": 0,
@@ -303,10 +295,6 @@ BK72XX_BOARD_PINS = {
"A0": 23,
},
"generic-bk7231n-qfn32-tuya": {
"SPI0_CS": 15,
"SPI0_MISO": 17,
"SPI0_MOSI": 16,
"SPI0_SCK": 14,
"WIRE1_SCL": 20,
"WIRE1_SDA": 21,
"WIRE2_SCL": 0,
@@ -497,7 +485,8 @@ BK72XX_BOARD_PINS = {
},
"cb3s": {
"WIRE1_SCL": 20,
"WIRE1_SDA": 21,
"WIRE1_SDA_0": 21,
"WIRE1_SDA_1": 21,
"SERIAL1_RX": 10,
"SERIAL1_TX": 11,
"SERIAL2_TX": 0,
@@ -658,10 +647,6 @@ BK72XX_BOARD_PINS = {
"A0": 23,
},
"generic-bk7252": {
"SPI0_CS": 15,
"SPI0_MISO": 17,
"SPI0_MOSI": 16,
"SPI0_SCK": 14,
"WIRE1_SCL": 20,
"WIRE1_SDA": 21,
"WIRE2_SCL": 0,
@@ -1111,10 +1096,6 @@ BK72XX_BOARD_PINS = {
"A0": 23,
},
"cb3se": {
"SPI0_CS": 15,
"SPI0_MISO": 17,
"SPI0_MOSI": 16,
"SPI0_SCK": 14,
"WIRE2_SCL": 0,
"WIRE2_SDA": 1,
"SERIAL1_RX": 10,

View File

@@ -6,9 +6,8 @@
*/
#include "bmp3xx_base.h"
#include "esphome/core/hal.h"
#include "esphome/core/log.h"
#include "esphome/core/progmem.h"
#include "esphome/core/hal.h"
#include <cinttypes>
namespace esphome {
@@ -27,18 +26,46 @@ static const LogString *chip_type_to_str(uint8_t chip_type) {
}
}
// Oversampling strings indexed by Oversampling enum (0-5): NONE, X2, X4, X8, X16, X32
PROGMEM_STRING_TABLE(OversamplingStrings, "None", "2x", "4x", "8x", "16x", "32x", "");
static const LogString *oversampling_to_str(Oversampling oversampling) {
return OversamplingStrings::get_log_str(static_cast<uint8_t>(oversampling), OversamplingStrings::LAST_INDEX);
switch (oversampling) {
case Oversampling::OVERSAMPLING_NONE:
return LOG_STR("None");
case Oversampling::OVERSAMPLING_X2:
return LOG_STR("2x");
case Oversampling::OVERSAMPLING_X4:
return LOG_STR("4x");
case Oversampling::OVERSAMPLING_X8:
return LOG_STR("8x");
case Oversampling::OVERSAMPLING_X16:
return LOG_STR("16x");
case Oversampling::OVERSAMPLING_X32:
return LOG_STR("32x");
default:
return LOG_STR("");
}
}
// IIR filter strings indexed by IIRFilter enum (0-7): OFF, 2, 4, 8, 16, 32, 64, 128
PROGMEM_STRING_TABLE(IIRFilterStrings, "OFF", "2x", "4x", "8x", "16x", "32x", "64x", "128x", "");
static const LogString *iir_filter_to_str(IIRFilter filter) {
return IIRFilterStrings::get_log_str(static_cast<uint8_t>(filter), IIRFilterStrings::LAST_INDEX);
switch (filter) {
case IIRFilter::IIR_FILTER_OFF:
return LOG_STR("OFF");
case IIRFilter::IIR_FILTER_2:
return LOG_STR("2x");
case IIRFilter::IIR_FILTER_4:
return LOG_STR("4x");
case IIRFilter::IIR_FILTER_8:
return LOG_STR("8x");
case IIRFilter::IIR_FILTER_16:
return LOG_STR("16x");
case IIRFilter::IIR_FILTER_32:
return LOG_STR("32x");
case IIRFilter::IIR_FILTER_64:
return LOG_STR("64x");
case IIRFilter::IIR_FILTER_128:
return LOG_STR("128x");
default:
return LOG_STR("");
}
}
void BMP3XXComponent::setup() {

View File

@@ -11,26 +11,57 @@
*/
#include "bmp581_base.h"
#include "esphome/core/hal.h"
#include "esphome/core/log.h"
#include "esphome/core/progmem.h"
#include "esphome/core/hal.h"
namespace esphome::bmp581_base {
static const char *const TAG = "bmp581";
// Oversampling strings indexed by Oversampling enum (0-7): NONE, X2, X4, X8, X16, X32, X64, X128
PROGMEM_STRING_TABLE(OversamplingStrings, "None", "2x", "4x", "8x", "16x", "32x", "64x", "128x", "");
static const LogString *oversampling_to_str(Oversampling oversampling) {
return OversamplingStrings::get_log_str(static_cast<uint8_t>(oversampling), OversamplingStrings::LAST_INDEX);
switch (oversampling) {
case Oversampling::OVERSAMPLING_NONE:
return LOG_STR("None");
case Oversampling::OVERSAMPLING_X2:
return LOG_STR("2x");
case Oversampling::OVERSAMPLING_X4:
return LOG_STR("4x");
case Oversampling::OVERSAMPLING_X8:
return LOG_STR("8x");
case Oversampling::OVERSAMPLING_X16:
return LOG_STR("16x");
case Oversampling::OVERSAMPLING_X32:
return LOG_STR("32x");
case Oversampling::OVERSAMPLING_X64:
return LOG_STR("64x");
case Oversampling::OVERSAMPLING_X128:
return LOG_STR("128x");
default:
return LOG_STR("");
}
}
// IIR filter strings indexed by IIRFilter enum (0-7): OFF, 2, 4, 8, 16, 32, 64, 128
PROGMEM_STRING_TABLE(IIRFilterStrings, "OFF", "2x", "4x", "8x", "16x", "32x", "64x", "128x", "");
static const LogString *iir_filter_to_str(IIRFilter filter) {
return IIRFilterStrings::get_log_str(static_cast<uint8_t>(filter), IIRFilterStrings::LAST_INDEX);
switch (filter) {
case IIRFilter::IIR_FILTER_OFF:
return LOG_STR("OFF");
case IIRFilter::IIR_FILTER_2:
return LOG_STR("2x");
case IIRFilter::IIR_FILTER_4:
return LOG_STR("4x");
case IIRFilter::IIR_FILTER_8:
return LOG_STR("8x");
case IIRFilter::IIR_FILTER_16:
return LOG_STR("16x");
case IIRFilter::IIR_FILTER_32:
return LOG_STR("32x");
case IIRFilter::IIR_FILTER_64:
return LOG_STR("64x");
case IIRFilter::IIR_FILTER_128:
return LOG_STR("128x");
default:
return LOG_STR("");
}
}
void BMP581Component::dump_config() {

View File

@@ -16,8 +16,8 @@ void CSE7766Component::loop() {
}
// Early return prevents updating last_transmission_ when no data is available.
size_t avail = this->available();
if (avail == 0) {
int avail = this->available();
if (avail <= 0) {
return;
}
@@ -27,7 +27,7 @@ void CSE7766Component::loop() {
// At 4800 baud (~480 bytes/sec) with ~122 Hz loop rate, typically ~4 bytes per call.
uint8_t buf[CSE7766_RAW_DATA_SIZE];
while (avail > 0) {
size_t to_read = std::min(avail, sizeof(buf));
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
if (!this->read_array(buf, to_read)) {
break;
}

View File

@@ -1,7 +1,6 @@
#include "debug_component.h"
#ifdef USE_ESP8266
#include "esphome/core/log.h"
#include "esphome/core/progmem.h"
#include <Esp.h>
extern "C" {
@@ -20,38 +19,27 @@ namespace debug {
static const char *const TAG = "debug";
// PROGMEM string table for reset reasons, indexed by reason code (0-6), with "Unknown" as fallback
// clang-format off
PROGMEM_STRING_TABLE(ResetReasonStrings,
"Power On", // 0 = REASON_DEFAULT_RST
"Hardware Watchdog", // 1 = REASON_WDT_RST
"Exception", // 2 = REASON_EXCEPTION_RST
"Software Watchdog", // 3 = REASON_SOFT_WDT_RST
"Software/System restart", // 4 = REASON_SOFT_RESTART
"Deep-Sleep Wake", // 5 = REASON_DEEP_SLEEP_AWAKE
"External System", // 6 = REASON_EXT_SYS_RST
"Unknown" // 7 = fallback
);
// clang-format on
static_assert(REASON_DEFAULT_RST == 0, "Reset reason enum values must match table indices");
static_assert(REASON_WDT_RST == 1, "Reset reason enum values must match table indices");
static_assert(REASON_EXCEPTION_RST == 2, "Reset reason enum values must match table indices");
static_assert(REASON_SOFT_WDT_RST == 3, "Reset reason enum values must match table indices");
static_assert(REASON_SOFT_RESTART == 4, "Reset reason enum values must match table indices");
static_assert(REASON_DEEP_SLEEP_AWAKE == 5, "Reset reason enum values must match table indices");
static_assert(REASON_EXT_SYS_RST == 6, "Reset reason enum values must match table indices");
// PROGMEM string table for flash chip modes, indexed by mode code (0-3), with "UNKNOWN" as fallback
PROGMEM_STRING_TABLE(FlashModeStrings, "QIO", "QOUT", "DIO", "DOUT", "UNKNOWN");
static_assert(FM_QIO == 0, "Flash mode enum values must match table indices");
static_assert(FM_QOUT == 1, "Flash mode enum values must match table indices");
static_assert(FM_DIO == 2, "Flash mode enum values must match table indices");
static_assert(FM_DOUT == 3, "Flash mode enum values must match table indices");
// Get reset reason string from reason code (no heap allocation)
// Returns LogString* pointing to flash (PROGMEM) on ESP8266
static const LogString *get_reset_reason_str(uint32_t reason) {
return ResetReasonStrings::get_log_str(static_cast<uint8_t>(reason), ResetReasonStrings::LAST_INDEX);
switch (reason) {
case REASON_DEFAULT_RST:
return LOG_STR("Power On");
case REASON_WDT_RST:
return LOG_STR("Hardware Watchdog");
case REASON_EXCEPTION_RST:
return LOG_STR("Exception");
case REASON_SOFT_WDT_RST:
return LOG_STR("Software Watchdog");
case REASON_SOFT_RESTART:
return LOG_STR("Software/System restart");
case REASON_DEEP_SLEEP_AWAKE:
return LOG_STR("Deep-Sleep Wake");
case REASON_EXT_SYS_RST:
return LOG_STR("External System");
default:
return LOG_STR("Unknown");
}
}
// Size for core version hex buffer
@@ -104,9 +92,23 @@ size_t DebugComponent::get_device_info_(std::span<char, DEVICE_INFO_BUFFER_SIZE>
constexpr size_t size = DEVICE_INFO_BUFFER_SIZE;
char *buf = buffer.data();
const LogString *flash_mode = FlashModeStrings::get_log_str(
static_cast<uint8_t>(ESP.getFlashChipMode()), // NOLINT(readability-static-accessed-through-instance)
FlashModeStrings::LAST_INDEX);
const LogString *flash_mode;
switch (ESP.getFlashChipMode()) { // NOLINT(readability-static-accessed-through-instance)
case FM_QIO:
flash_mode = LOG_STR("QIO");
break;
case FM_QOUT:
flash_mode = LOG_STR("QOUT");
break;
case FM_DIO:
flash_mode = LOG_STR("DIO");
break;
case FM_DOUT:
flash_mode = LOG_STR("DOUT");
break;
default:
flash_mode = LOG_STR("UNKNOWN");
}
uint32_t flash_size = ESP.getFlashChipSize() / 1024; // NOLINT(readability-static-accessed-through-instance)
uint32_t flash_speed = ESP.getFlashChipSpeed() / 1000000; // NOLINT(readability-static-accessed-through-instance)
ESP_LOGD(TAG, "Flash Chip: Size=%" PRIu32 "kB Speed=%" PRIu32 "MHz Mode=%s", flash_size, flash_speed,

View File

@@ -133,10 +133,10 @@ void DFPlayer::send_cmd_(uint8_t cmd, uint16_t argument) {
void DFPlayer::loop() {
// Read all available bytes in batches to reduce UART call overhead.
size_t avail = this->available();
int avail = this->available();
uint8_t buf[64];
while (avail > 0) {
size_t to_read = std::min(avail, sizeof(buf));
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
if (!this->read_array(buf, to_read)) {
break;
}

View File

@@ -63,13 +63,11 @@ def validate_auto_clear(value):
return cv.boolean(value)
def basic_display_schema(default_update_interval: str = "1s") -> cv.Schema:
"""Create a basic display schema with configurable default update interval."""
return cv.Schema(
{
cv.Exclusive(CONF_LAMBDA, CONF_LAMBDA): cv.lambda_,
}
).extend(cv.polling_component_schema(default_update_interval))
BASIC_DISPLAY_SCHEMA = cv.Schema(
{
cv.Exclusive(CONF_LAMBDA, CONF_LAMBDA): cv.lambda_,
}
).extend(cv.polling_component_schema("1s"))
def _validate_test_card(config):
@@ -83,41 +81,34 @@ def _validate_test_card(config):
return config
def full_display_schema(default_update_interval: str = "1s") -> cv.Schema:
"""Create a full display schema with configurable default update interval."""
schema = basic_display_schema(default_update_interval).extend(
{
cv.Optional(CONF_ROTATION): validate_rotation,
cv.Exclusive(CONF_PAGES, CONF_LAMBDA): cv.All(
cv.ensure_list(
{
cv.GenerateID(): cv.declare_id(DisplayPage),
cv.Required(CONF_LAMBDA): cv.lambda_,
}
),
cv.Length(min=1),
),
cv.Optional(CONF_ON_PAGE_CHANGE): automation.validate_automation(
FULL_DISPLAY_SCHEMA = BASIC_DISPLAY_SCHEMA.extend(
{
cv.Optional(CONF_ROTATION): validate_rotation,
cv.Exclusive(CONF_PAGES, CONF_LAMBDA): cv.All(
cv.ensure_list(
{
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(
DisplayOnPageChangeTrigger
),
cv.Optional(CONF_FROM): cv.use_id(DisplayPage),
cv.Optional(CONF_TO): cv.use_id(DisplayPage),
cv.GenerateID(): cv.declare_id(DisplayPage),
cv.Required(CONF_LAMBDA): cv.lambda_,
}
),
cv.Optional(
CONF_AUTO_CLEAR_ENABLED, default=CONF_UNSPECIFIED
): validate_auto_clear,
cv.Optional(CONF_SHOW_TEST_CARD): cv.boolean,
}
)
schema.add_extra(_validate_test_card)
return schema
BASIC_DISPLAY_SCHEMA = basic_display_schema("1s")
FULL_DISPLAY_SCHEMA = full_display_schema("1s")
cv.Length(min=1),
),
cv.Optional(CONF_ON_PAGE_CHANGE): automation.validate_automation(
{
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(
DisplayOnPageChangeTrigger
),
cv.Optional(CONF_FROM): cv.use_id(DisplayPage),
cv.Optional(CONF_TO): cv.use_id(DisplayPage),
}
),
cv.Optional(
CONF_AUTO_CLEAR_ENABLED, default=CONF_UNSPECIFIED
): validate_auto_clear,
cv.Optional(CONF_SHOW_TEST_CARD): cv.boolean,
}
)
FULL_DISPLAY_SCHEMA.add_extra(_validate_test_card)
async def setup_display_core_(var, config):

View File

@@ -28,28 +28,15 @@ void DlmsMeterComponent::dump_config() {
void DlmsMeterComponent::loop() {
// Read while data is available, netznoe uses two frames so allow 2x max frame length
size_t avail = this->available();
if (avail > 0) {
size_t remaining = MBUS_MAX_FRAME_LENGTH * 2 - this->receive_buffer_.size();
if (remaining == 0) {
while (this->available()) {
if (this->receive_buffer_.size() >= MBUS_MAX_FRAME_LENGTH * 2) {
ESP_LOGW(TAG, "Receive buffer full, dropping remaining bytes");
} else {
// Read all available bytes in batches to reduce UART call overhead.
// Cap reads to remaining buffer capacity.
if (avail > remaining) {
avail = remaining;
}
uint8_t buf[64];
while (avail > 0) {
size_t to_read = std::min(avail, sizeof(buf));
if (!this->read_array(buf, to_read)) {
break;
}
avail -= to_read;
this->receive_buffer_.insert(this->receive_buffer_.end(), buf, buf + to_read);
this->last_read_ = millis();
}
break;
}
uint8_t c;
this->read_byte(&c);
this->receive_buffer_.push_back(c);
this->last_read_ = millis();
}
if (!this->receive_buffer_.empty() && millis() - this->last_read_ > this->read_timeout_) {

View File

@@ -40,7 +40,9 @@ bool Dsmr::ready_to_request_data_() {
this->start_requesting_data_();
}
if (!this->requesting_data_) {
this->drain_rx_buffer_();
while (this->available()) {
this->read();
}
}
}
return this->requesting_data_;
@@ -113,18 +115,10 @@ void Dsmr::stop_requesting_data_() {
} else {
ESP_LOGV(TAG, "Stop reading data from P1 port");
}
this->drain_rx_buffer_();
this->requesting_data_ = false;
}
}
void Dsmr::drain_rx_buffer_() {
uint8_t buf[64];
size_t avail;
while ((avail = this->available()) > 0) {
if (!this->read_array(buf, std::min(avail, sizeof(buf)))) {
break;
while (this->available()) {
this->read();
}
this->requesting_data_ = false;
}
}
@@ -134,148 +128,125 @@ void Dsmr::reset_telegram_() {
this->bytes_read_ = 0;
this->crypt_bytes_read_ = 0;
this->crypt_telegram_len_ = 0;
this->last_read_time_ = 0;
}
void Dsmr::receive_telegram_() {
while (this->available_within_timeout_()) {
// Read all available bytes in batches to reduce UART call overhead.
uint8_t buf[64];
size_t avail = this->available();
while (avail > 0) {
size_t to_read = std::min(avail, sizeof(buf));
if (!this->read_array(buf, to_read))
return;
avail -= to_read;
const char c = this->read();
for (size_t i = 0; i < to_read; i++) {
const char c = static_cast<char>(buf[i]);
// Find a new telegram header, i.e. forward slash.
if (c == '/') {
ESP_LOGV(TAG, "Header of telegram found");
this->reset_telegram_();
this->header_found_ = true;
}
if (!this->header_found_)
continue;
// Find a new telegram header, i.e. forward slash.
if (c == '/') {
ESP_LOGV(TAG, "Header of telegram found");
this->reset_telegram_();
this->header_found_ = true;
}
if (!this->header_found_)
continue;
// Check for buffer overflow.
if (this->bytes_read_ >= this->max_telegram_len_) {
this->reset_telegram_();
ESP_LOGE(TAG, "Error: telegram larger than buffer (%d bytes)", this->max_telegram_len_);
return;
}
// Check for buffer overflow.
if (this->bytes_read_ >= this->max_telegram_len_) {
this->reset_telegram_();
ESP_LOGE(TAG, "Error: telegram larger than buffer (%d bytes)", this->max_telegram_len_);
return;
}
// Some v2.2 or v3 meters will send a new value which starts with '('
// in a new line, while the value belongs to the previous ObisId. For
// proper parsing, remove these new line characters.
if (c == '(') {
while (true) {
auto previous_char = this->telegram_[this->bytes_read_ - 1];
if (previous_char == '\n' || previous_char == '\r') {
this->bytes_read_--;
} else {
break;
}
}
}
// Store the byte in the buffer.
this->telegram_[this->bytes_read_] = c;
this->bytes_read_++;
// Check for a footer, i.e. exclamation mark, followed by a hex checksum.
if (c == '!') {
ESP_LOGV(TAG, "Footer of telegram found");
this->footer_found_ = true;
continue;
}
// Check for the end of the hex checksum, i.e. a newline.
if (this->footer_found_ && c == '\n') {
// Parse the telegram and publish sensor values.
this->parse_telegram();
this->reset_telegram_();
return;
// Some v2.2 or v3 meters will send a new value which starts with '('
// in a new line, while the value belongs to the previous ObisId. For
// proper parsing, remove these new line characters.
if (c == '(') {
while (true) {
auto previous_char = this->telegram_[this->bytes_read_ - 1];
if (previous_char == '\n' || previous_char == '\r') {
this->bytes_read_--;
} else {
break;
}
}
}
// Store the byte in the buffer.
this->telegram_[this->bytes_read_] = c;
this->bytes_read_++;
// Check for a footer, i.e. exclamation mark, followed by a hex checksum.
if (c == '!') {
ESP_LOGV(TAG, "Footer of telegram found");
this->footer_found_ = true;
continue;
}
// Check for the end of the hex checksum, i.e. a newline.
if (this->footer_found_ && c == '\n') {
// Parse the telegram and publish sensor values.
this->parse_telegram();
this->reset_telegram_();
return;
}
}
}
void Dsmr::receive_encrypted_telegram_() {
while (this->available_within_timeout_()) {
// Read all available bytes in batches to reduce UART call overhead.
uint8_t buf[64];
size_t avail = this->available();
while (avail > 0) {
size_t to_read = std::min(avail, sizeof(buf));
if (!this->read_array(buf, to_read))
return;
avail -= to_read;
const char c = this->read();
for (size_t i = 0; i < to_read; i++) {
const char c = static_cast<char>(buf[i]);
// Find a new telegram start byte.
if (!this->header_found_) {
if ((uint8_t) c != 0xDB) {
continue;
}
ESP_LOGV(TAG, "Start byte 0xDB of encrypted telegram found");
this->reset_telegram_();
this->header_found_ = true;
}
// Check for buffer overflow.
if (this->crypt_bytes_read_ >= this->max_telegram_len_) {
this->reset_telegram_();
ESP_LOGE(TAG, "Error: encrypted telegram larger than buffer (%d bytes)", this->max_telegram_len_);
return;
}
// Store the byte in the buffer.
this->crypt_telegram_[this->crypt_bytes_read_] = c;
this->crypt_bytes_read_++;
// Read the length of the incoming encrypted telegram.
if (this->crypt_telegram_len_ == 0 && this->crypt_bytes_read_ > 20) {
// Complete header + data bytes
this->crypt_telegram_len_ = 13 + (this->crypt_telegram_[11] << 8 | this->crypt_telegram_[12]);
ESP_LOGV(TAG, "Encrypted telegram length: %d bytes", this->crypt_telegram_len_);
}
// Check for the end of the encrypted telegram.
if (this->crypt_telegram_len_ == 0 || this->crypt_bytes_read_ != this->crypt_telegram_len_) {
continue;
}
ESP_LOGV(TAG, "End of encrypted telegram found");
// Decrypt the encrypted telegram.
GCM<AES128> *gcmaes128{new GCM<AES128>()};
gcmaes128->setKey(this->decryption_key_.data(), gcmaes128->keySize());
// the iv is 8 bytes of the system title + 4 bytes frame counter
// system title is at byte 2 and frame counter at byte 15
for (int i = 10; i < 14; i++)
this->crypt_telegram_[i] = this->crypt_telegram_[i + 4];
constexpr uint16_t iv_size{12};
gcmaes128->setIV(&this->crypt_telegram_[2], iv_size);
gcmaes128->decrypt(reinterpret_cast<uint8_t *>(this->telegram_),
// the ciphertext start at byte 18
&this->crypt_telegram_[18],
// cipher size
this->crypt_bytes_read_ - 17);
delete gcmaes128; // NOLINT(cppcoreguidelines-owning-memory)
this->bytes_read_ = strnlen(this->telegram_, this->max_telegram_len_);
ESP_LOGV(TAG, "Decrypted telegram size: %d bytes", this->bytes_read_);
ESP_LOGVV(TAG, "Decrypted telegram: %s", this->telegram_);
// Parse the decrypted telegram and publish sensor values.
this->parse_telegram();
this->reset_telegram_();
return;
// Find a new telegram start byte.
if (!this->header_found_) {
if ((uint8_t) c != 0xDB) {
continue;
}
ESP_LOGV(TAG, "Start byte 0xDB of encrypted telegram found");
this->reset_telegram_();
this->header_found_ = true;
}
// Check for buffer overflow.
if (this->crypt_bytes_read_ >= this->max_telegram_len_) {
this->reset_telegram_();
ESP_LOGE(TAG, "Error: encrypted telegram larger than buffer (%d bytes)", this->max_telegram_len_);
return;
}
// Store the byte in the buffer.
this->crypt_telegram_[this->crypt_bytes_read_] = c;
this->crypt_bytes_read_++;
// Read the length of the incoming encrypted telegram.
if (this->crypt_telegram_len_ == 0 && this->crypt_bytes_read_ > 20) {
// Complete header + data bytes
this->crypt_telegram_len_ = 13 + (this->crypt_telegram_[11] << 8 | this->crypt_telegram_[12]);
ESP_LOGV(TAG, "Encrypted telegram length: %d bytes", this->crypt_telegram_len_);
}
// Check for the end of the encrypted telegram.
if (this->crypt_telegram_len_ == 0 || this->crypt_bytes_read_ != this->crypt_telegram_len_) {
continue;
}
ESP_LOGV(TAG, "End of encrypted telegram found");
// Decrypt the encrypted telegram.
GCM<AES128> *gcmaes128{new GCM<AES128>()};
gcmaes128->setKey(this->decryption_key_.data(), gcmaes128->keySize());
// the iv is 8 bytes of the system title + 4 bytes frame counter
// system title is at byte 2 and frame counter at byte 15
for (int i = 10; i < 14; i++)
this->crypt_telegram_[i] = this->crypt_telegram_[i + 4];
constexpr uint16_t iv_size{12};
gcmaes128->setIV(&this->crypt_telegram_[2], iv_size);
gcmaes128->decrypt(reinterpret_cast<uint8_t *>(this->telegram_),
// the ciphertext start at byte 18
&this->crypt_telegram_[18],
// cipher size
this->crypt_bytes_read_ - 17);
delete gcmaes128; // NOLINT(cppcoreguidelines-owning-memory)
this->bytes_read_ = strnlen(this->telegram_, this->max_telegram_len_);
ESP_LOGV(TAG, "Decrypted telegram size: %d bytes", this->bytes_read_);
ESP_LOGVV(TAG, "Decrypted telegram: %s", this->telegram_);
// Parse the decrypted telegram and publish sensor values.
this->parse_telegram();
this->reset_telegram_();
return;
}
}

View File

@@ -85,7 +85,6 @@ class Dsmr : public Component, public uart::UARTDevice {
void receive_telegram_();
void receive_encrypted_telegram_();
void reset_telegram_();
void drain_rx_buffer_();
/// Wait for UART data to become available within the read timeout.
///

View File

@@ -135,7 +135,6 @@ DEFAULT_EXCLUDED_IDF_COMPONENTS = (
"esp_driver_dac", # DAC driver - only needed by esp32_dac component
"esp_driver_i2s", # I2S driver - only needed by i2s_audio component
"esp_driver_mcpwm", # MCPWM driver - ESPHome doesn't use motor control PWM
"esp_driver_pcnt", # PCNT driver - only needed by pulse_counter, hlw8012 components
"esp_driver_rmt", # RMT driver - only needed by remote_transmitter/receiver, neopixelbus
"esp_driver_touch_sens", # Touch sensor driver - only needed by esp32_touch
"esp_driver_twai", # TWAI/CAN driver - only needed by esp32_can component
@@ -1436,6 +1435,10 @@ async def to_code(config):
CORE.relative_internal_path(".espressif")
)
# Set the uv cache inside the data dir so "Clean All" clears it.
# Avoids persistent corrupted cache from mid-stream download failures.
os.environ["UV_CACHE_DIR"] = str(CORE.relative_internal_path(".uv_cache"))
if conf[CONF_TYPE] == FRAMEWORK_ESP_IDF:
cg.add_build_flag("-DUSE_ESP_IDF")
cg.add_build_flag("-DUSE_ESP32_FRAMEWORK_ESP_IDF")

View File

@@ -85,6 +85,7 @@ void ESP32InternalGPIOPin::attach_interrupt(void (*func)(void *), void *arg, gpi
break;
}
gpio_set_intr_type(this->get_pin_num(), idf_type);
gpio_intr_enable(this->get_pin_num());
if (!isr_service_installed) {
auto res = gpio_install_isr_service(ESP_INTR_FLAG_LEVEL3);
if (res != ESP_OK) {
@@ -94,7 +95,6 @@ void ESP32InternalGPIOPin::attach_interrupt(void (*func)(void *), void *arg, gpi
isr_service_installed = true;
}
gpio_isr_handler_add(this->get_pin_num(), func, arg);
gpio_intr_enable(this->get_pin_num());
}
size_t ESP32InternalGPIOPin::dump_summary(char *buffer, size_t len) const {

View File

@@ -19,7 +19,16 @@ static constexpr size_t KEY_BUFFER_SIZE = 12;
struct NVSData {
uint32_t key;
SmallInlineBuffer<8> data; // Most prefs fit in 8 bytes (covers fan, cover, select, etc.)
std::unique_ptr<uint8_t[]> data;
size_t len;
void set_data(const uint8_t *src, size_t size) {
if (!this->data || this->len != size) {
this->data = std::make_unique<uint8_t[]>(size);
this->len = size;
}
memcpy(this->data.get(), src, size);
}
};
static std::vector<NVSData> s_pending_save; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
@@ -32,14 +41,14 @@ class ESP32PreferenceBackend : public ESPPreferenceBackend {
// try find in pending saves and update that
for (auto &obj : s_pending_save) {
if (obj.key == this->key) {
obj.data.set(data, len);
obj.set_data(data, len);
return true;
}
}
NVSData save{};
save.key = this->key;
save.data.set(data, len);
s_pending_save.push_back(std::move(save));
save.set_data(data, len);
s_pending_save.emplace_back(std::move(save));
ESP_LOGVV(TAG, "s_pending_save: key: %" PRIu32 ", len: %zu", this->key, len);
return true;
}
@@ -47,11 +56,11 @@ class ESP32PreferenceBackend : public ESPPreferenceBackend {
// try find in pending saves and load from that
for (auto &obj : s_pending_save) {
if (obj.key == this->key) {
if (obj.data.size() != len) {
if (obj.len != len) {
// size mismatch
return false;
}
memcpy(data, obj.data.data(), len);
memcpy(data, obj.data.get(), len);
return true;
}
}
@@ -127,10 +136,10 @@ class ESP32Preferences : public ESPPreferences {
snprintf(key_str, sizeof(key_str), "%" PRIu32, save.key);
ESP_LOGVV(TAG, "Checking if NVS data %s has changed", key_str);
if (this->is_changed_(this->nvs_handle, save, key_str)) {
esp_err_t err = nvs_set_blob(this->nvs_handle, key_str, save.data.data(), save.data.size());
ESP_LOGV(TAG, "sync: key: %s, len: %zu", key_str, save.data.size());
esp_err_t err = nvs_set_blob(this->nvs_handle, key_str, save.data.get(), save.len);
ESP_LOGV(TAG, "sync: key: %s, len: %zu", key_str, save.len);
if (err != 0) {
ESP_LOGV(TAG, "nvs_set_blob('%s', len=%zu) failed: %s", key_str, save.data.size(), esp_err_to_name(err));
ESP_LOGV(TAG, "nvs_set_blob('%s', len=%zu) failed: %s", key_str, save.len, esp_err_to_name(err));
failed++;
last_err = err;
last_key = save.key;
@@ -138,7 +147,7 @@ class ESP32Preferences : public ESPPreferences {
}
written++;
} else {
ESP_LOGV(TAG, "NVS data not changed skipping %" PRIu32 " len=%zu", save.key, save.data.size());
ESP_LOGV(TAG, "NVS data not changed skipping %" PRIu32 " len=%zu", save.key, save.len);
cached++;
}
s_pending_save.erase(s_pending_save.begin() + i);
@@ -169,7 +178,7 @@ class ESP32Preferences : public ESPPreferences {
return true;
}
// Check size first before allocating memory
if (actual_len != to_save.data.size()) {
if (actual_len != to_save.len) {
return true;
}
// Most preferences are small, use stack buffer with heap fallback for large ones
@@ -179,7 +188,7 @@ class ESP32Preferences : public ESPPreferences {
ESP_LOGV(TAG, "nvs_get_blob('%s') failed: %s", key_str, esp_err_to_name(err));
return true;
}
return memcmp(to_save.data.data(), stored_data.get(), to_save.data.size()) != 0;
return memcmp(to_save.data.get(), stored_data.get(), to_save.len) != 0;
}
bool reset() override {

View File

@@ -98,10 +98,6 @@ void ESP32BLE::advertising_set_service_data(const std::vector<uint8_t> &data) {
}
void ESP32BLE::advertising_set_manufacturer_data(const std::vector<uint8_t> &data) {
this->advertising_set_manufacturer_data(std::span<const uint8_t>(data));
}
void ESP32BLE::advertising_set_manufacturer_data(std::span<const uint8_t> data) {
this->advertising_init_();
this->advertising_->set_manufacturer_data(data);
this->advertising_start();
@@ -373,9 +369,42 @@ bool ESP32BLE::ble_dismantle_() {
}
void ESP32BLE::loop() {
if (this->state_ != BLE_COMPONENT_STATE_ACTIVE) {
this->loop_handle_state_transition_not_active_();
return;
switch (this->state_) {
case BLE_COMPONENT_STATE_OFF:
case BLE_COMPONENT_STATE_DISABLED:
return;
case BLE_COMPONENT_STATE_DISABLE: {
ESP_LOGD(TAG, "Disabling");
#ifdef ESPHOME_ESP32_BLE_BLE_STATUS_EVENT_HANDLER_COUNT
for (auto *ble_event_handler : this->ble_status_event_handlers_) {
ble_event_handler->ble_before_disabled_event_handler();
}
#endif
if (!ble_dismantle_()) {
ESP_LOGE(TAG, "Could not be dismantled");
this->mark_failed();
return;
}
this->state_ = BLE_COMPONENT_STATE_DISABLED;
return;
}
case BLE_COMPONENT_STATE_ENABLE: {
ESP_LOGD(TAG, "Enabling");
this->state_ = BLE_COMPONENT_STATE_OFF;
if (!ble_setup_()) {
ESP_LOGE(TAG, "Could not be set up");
this->mark_failed();
return;
}
this->state_ = BLE_COMPONENT_STATE_ACTIVE;
return;
}
case BLE_COMPONENT_STATE_ACTIVE:
break;
}
BLEEvent *ble_event = this->ble_events_.pop();
@@ -491,37 +520,6 @@ void ESP32BLE::loop() {
}
}
void ESP32BLE::loop_handle_state_transition_not_active_() {
// Caller ensures state_ != ACTIVE
if (this->state_ == BLE_COMPONENT_STATE_DISABLE) {
ESP_LOGD(TAG, "Disabling");
#ifdef ESPHOME_ESP32_BLE_BLE_STATUS_EVENT_HANDLER_COUNT
for (auto *ble_event_handler : this->ble_status_event_handlers_) {
ble_event_handler->ble_before_disabled_event_handler();
}
#endif
if (!ble_dismantle_()) {
ESP_LOGE(TAG, "Could not be dismantled");
this->mark_failed();
return;
}
this->state_ = BLE_COMPONENT_STATE_DISABLED;
} else if (this->state_ == BLE_COMPONENT_STATE_ENABLE) {
ESP_LOGD(TAG, "Enabling");
this->state_ = BLE_COMPONENT_STATE_OFF;
if (!ble_setup_()) {
ESP_LOGE(TAG, "Could not be set up");
this->mark_failed();
return;
}
this->state_ = BLE_COMPONENT_STATE_ACTIVE;
}
}
// Helper function to load new event data based on type
void load_ble_event(BLEEvent *event, esp_gap_ble_cb_event_t e, esp_ble_gap_cb_param_t *p) {
event->load_gap_event(e, p);

View File

@@ -118,7 +118,6 @@ class ESP32BLE : public Component {
void advertising_start();
void advertising_set_service_data(const std::vector<uint8_t> &data);
void advertising_set_manufacturer_data(const std::vector<uint8_t> &data);
void advertising_set_manufacturer_data(std::span<const uint8_t> data);
void advertising_set_appearance(uint16_t appearance) { this->appearance_ = appearance; }
void advertising_set_service_data_and_name(std::span<const uint8_t> data, bool include_name);
void advertising_add_service_uuid(ESPBTUUID uuid);
@@ -156,10 +155,6 @@ class ESP32BLE : public Component {
#endif
static void gap_event_handler(esp_gap_ble_cb_event_t event, esp_ble_gap_cb_param_t *param);
// Handle non-ACTIVE state transitions (DISABLE, ENABLE, OFF, DISABLED).
// Extracted from loop() to keep the hot event-processing path small.
void __attribute__((noinline)) loop_handle_state_transition_not_active_();
bool ble_setup_();
bool ble_dismantle_();
bool ble_pre_setup_();

View File

@@ -59,10 +59,6 @@ void BLEAdvertising::set_service_data(const std::vector<uint8_t> &data) {
}
void BLEAdvertising::set_manufacturer_data(const std::vector<uint8_t> &data) {
this->set_manufacturer_data(std::span<const uint8_t>(data));
}
void BLEAdvertising::set_manufacturer_data(std::span<const uint8_t> data) {
delete[] this->advertising_data_.p_manufacturer_data;
this->advertising_data_.p_manufacturer_data = nullptr;
this->advertising_data_.manufacturer_len = data.size();

View File

@@ -28,7 +28,6 @@ class BLEAdvertising {
void set_scan_response(bool scan_response) { this->scan_response_ = scan_response; }
void set_min_preferred_interval(uint16_t interval) { this->advertising_data_.min_interval = interval; }
void set_manufacturer_data(const std::vector<uint8_t> &data);
void set_manufacturer_data(std::span<const uint8_t> data);
void set_appearance(uint16_t appearance) { this->advertising_data_.appearance = appearance; }
void set_service_data(const std::vector<uint8_t> &data);
void set_service_data(std::span<const uint8_t> data);

View File

@@ -1,6 +1,5 @@
#include "esp32_ble_beacon.h"
#include "esphome/core/log.h"
#include "esphome/core/helpers.h"
#ifdef USE_ESP32

View File

@@ -15,10 +15,7 @@ Trigger<std::vector<uint8_t>, uint16_t> *BLETriggers::create_characteristic_on_w
Trigger<std::vector<uint8_t>, uint16_t> *on_write_trigger = // NOLINT(cppcoreguidelines-owning-memory)
new Trigger<std::vector<uint8_t>, uint16_t>();
characteristic->on_write([on_write_trigger](std::span<const uint8_t> data, uint16_t id) {
// Convert span to vector for trigger - copy is necessary because:
// 1. Trigger stores the data for use in automation actions that execute later
// 2. The span is only valid during this callback (points to temporary BLE stack data)
// 3. User lambdas in automations need persistent data they can access asynchronously
// Convert span to vector for trigger
on_write_trigger->trigger(std::vector<uint8_t>(data.begin(), data.end()), id);
});
return on_write_trigger;
@@ -30,10 +27,7 @@ Trigger<std::vector<uint8_t>, uint16_t> *BLETriggers::create_descriptor_on_write
Trigger<std::vector<uint8_t>, uint16_t> *on_write_trigger = // NOLINT(cppcoreguidelines-owning-memory)
new Trigger<std::vector<uint8_t>, uint16_t>();
descriptor->on_write([on_write_trigger](std::span<const uint8_t> data, uint16_t id) {
// Convert span to vector for trigger - copy is necessary because:
// 1. Trigger stores the data for use in automation actions that execute later
// 2. The span is only valid during this callback (points to temporary BLE stack data)
// 3. User lambdas in automations need persistent data they can access asynchronously
// Convert span to vector for trigger
on_write_trigger->trigger(std::vector<uint8_t>(data.begin(), data.end()), id);
});
return on_write_trigger;

View File

@@ -95,9 +95,9 @@ async def to_code(config):
framework_ver: cv.Version = CORE.data[KEY_CORE][KEY_FRAMEWORK_VERSION]
os.environ["ESP_IDF_VERSION"] = f"{framework_ver.major}.{framework_ver.minor}"
if framework_ver >= cv.Version(5, 5, 0):
esp32.add_idf_component(name="espressif/esp_wifi_remote", ref="1.3.2")
esp32.add_idf_component(name="espressif/esp_wifi_remote", ref="1.2.4")
esp32.add_idf_component(name="espressif/eppp_link", ref="1.1.4")
esp32.add_idf_component(name="espressif/esp_hosted", ref="2.11.5")
esp32.add_idf_component(name="espressif/esp_hosted", ref="2.9.3")
else:
esp32.add_idf_component(name="espressif/esp_wifi_remote", ref="0.13.0")
esp32.add_idf_component(name="espressif/eppp_link", ref="0.2.0")

View File

@@ -7,24 +7,21 @@
#include "esphome/core/log.h"
#include <esp_attr.h>
#include <esp_clk_tree.h>
namespace esphome {
namespace esp32_rmt_led_strip {
static const char *const TAG = "esp32_rmt_led_strip";
static const size_t RMT_SYMBOLS_PER_BYTE = 8;
#ifdef USE_ESP32_VARIANT_ESP32H2
static const uint32_t RMT_CLK_FREQ = 32000000;
static const uint8_t RMT_CLK_DIV = 1;
#else
static const uint32_t RMT_CLK_FREQ = 80000000;
static const uint8_t RMT_CLK_DIV = 2;
#endif
// Query the RMT default clock source frequency. This varies by variant:
// APB (80MHz) on ESP32/S2/S3/C3, PLL_F80M (80MHz) on C6/P4, XTAL (32MHz) on H2.
// Worst-case reset time is WS2811 at 300µs = 24000 ticks at 80MHz, well within
// the 15-bit rmt_symbol_word_t duration field max of 32767.
static uint32_t rmt_resolution_hz() {
uint32_t freq;
esp_clk_tree_src_get_freq_hz((soc_module_clk_t) RMT_CLK_SRC_DEFAULT, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &freq);
return freq;
}
static const size_t RMT_SYMBOLS_PER_BYTE = 8;
#if ESP_IDF_VERSION >= ESP_IDF_VERSION_VAL(5, 3, 0)
static size_t IRAM_ATTR HOT encoder_callback(const void *data, size_t size, size_t symbols_written, size_t symbols_free,
@@ -95,7 +92,7 @@ void ESP32RMTLEDStripLightOutput::setup() {
rmt_tx_channel_config_t channel;
memset(&channel, 0, sizeof(channel));
channel.clk_src = RMT_CLK_SRC_DEFAULT;
channel.resolution_hz = rmt_resolution_hz();
channel.resolution_hz = RMT_CLK_FREQ / RMT_CLK_DIV;
channel.gpio_num = gpio_num_t(this->pin_);
channel.mem_block_symbols = this->rmt_symbols_;
channel.trans_queue_depth = 1;
@@ -140,7 +137,7 @@ void ESP32RMTLEDStripLightOutput::setup() {
void ESP32RMTLEDStripLightOutput::set_led_params(uint32_t bit0_high, uint32_t bit0_low, uint32_t bit1_high,
uint32_t bit1_low, uint32_t reset_time_high, uint32_t reset_time_low) {
float ratio = (float) rmt_resolution_hz() / 1e09f;
float ratio = (float) RMT_CLK_FREQ / RMT_CLK_DIV / 1e09f;
// 0-bit
this->params_.bit0.duration0 = (uint32_t) (ratio * bit0_high);

View File

@@ -811,8 +811,8 @@ void EthernetComponent::ksz8081_set_clock_reference_(esp_eth_mac_t *mac) {
ESPHL_ERROR_CHECK(err, "Read PHY Control 2 failed");
#if ESPHOME_LOG_LEVEL >= ESPHOME_LOG_LEVEL_VERY_VERBOSE
char hex_buf[format_hex_pretty_size(PHY_REG_SIZE)];
ESP_LOGVV(TAG, "KSZ8081 PHY Control 2: %s", format_hex_pretty_to(hex_buf, (uint8_t *) &phy_control_2, PHY_REG_SIZE));
#endif
ESP_LOGVV(TAG, "KSZ8081 PHY Control 2: %s", format_hex_pretty_to(hex_buf, (uint8_t *) &phy_control_2, PHY_REG_SIZE));
/*
* Bit 7 is `RMII Reference Clock Select`. Default is `0`.
@@ -829,10 +829,8 @@ void EthernetComponent::ksz8081_set_clock_reference_(esp_eth_mac_t *mac) {
ESPHL_ERROR_CHECK(err, "Write PHY Control 2 failed");
err = mac->read_phy_reg(mac, this->phy_addr_, KSZ80XX_PC2R_REG_ADDR, &(phy_control_2));
ESPHL_ERROR_CHECK(err, "Read PHY Control 2 failed");
#if ESPHOME_LOG_LEVEL >= ESPHOME_LOG_LEVEL_VERY_VERBOSE
ESP_LOGVV(TAG, "KSZ8081 PHY Control 2: %s",
format_hex_pretty_to(hex_buf, (uint8_t *) &phy_control_2, PHY_REG_SIZE));
#endif
}
}
#endif // USE_ETHERNET_KSZ8081

View File

@@ -68,7 +68,7 @@ void FanCall::validate_() {
auto traits = this->parent_.get_traits();
if (this->speed_.has_value()) {
this->speed_ = clamp(*this->speed_, 1, static_cast<int>(traits.supported_speed_count()));
this->speed_ = clamp(*this->speed_, 1, traits.supported_speed_count());
// https://developers.home-assistant.io/docs/core/entity/fan/#preset-modes
// "Manually setting a speed must disable any set preset mode"

View File

@@ -11,7 +11,7 @@ namespace fan {
class FanTraits {
public:
FanTraits() = default;
FanTraits(bool oscillation, bool speed, bool direction, uint8_t speed_count)
FanTraits(bool oscillation, bool speed, bool direction, int speed_count)
: oscillation_(oscillation), speed_(speed), direction_(direction), speed_count_(speed_count) {}
/// Return if this fan supports oscillation.
@@ -23,9 +23,9 @@ class FanTraits {
/// Set whether this fan supports speed levels.
void set_speed(bool speed) { this->speed_ = speed; }
/// Return how many speed levels the fan has
uint8_t supported_speed_count() const { return this->speed_count_; }
int supported_speed_count() const { return this->speed_count_; }
/// Set how many speed levels this fan has.
void set_supported_speed_count(uint8_t speed_count) { this->speed_count_ = speed_count; }
void set_supported_speed_count(int speed_count) { this->speed_count_ = speed_count; }
/// Return if this fan supports changing direction
bool supports_direction() const { return this->direction_; }
/// Set whether this fan supports changing direction
@@ -64,7 +64,7 @@ class FanTraits {
bool oscillation_{false};
bool speed_{false};
bool direction_{false};
uint8_t speed_count_{};
int speed_count_{};
std::vector<const char *> preset_modes_{};
};

View File

@@ -39,7 +39,7 @@ CONFIG_SCHEMA = (
cv.Optional(CONF_DECAY_MODE, default="SLOW"): cv.enum(
DECAY_MODE_OPTIONS, upper=True
),
cv.Optional(CONF_SPEED_COUNT, default=100): cv.int_range(min=1, max=255),
cv.Optional(CONF_SPEED_COUNT, default=100): cv.int_range(min=1),
cv.Optional(CONF_ENABLE_PIN): cv.use_id(output.FloatOutput),
cv.Optional(CONF_PRESET_MODES): validate_preset_modes,
}

View File

@@ -15,7 +15,7 @@ enum DecayMode {
class HBridgeFan : public Component, public fan::Fan {
public:
HBridgeFan(uint8_t speed_count, DecayMode decay_mode) : speed_count_(speed_count), decay_mode_(decay_mode) {}
HBridgeFan(int speed_count, DecayMode decay_mode) : speed_count_(speed_count), decay_mode_(decay_mode) {}
void set_pin_a(output::FloatOutput *pin_a) { pin_a_ = pin_a; }
void set_pin_b(output::FloatOutput *pin_b) { pin_b_ = pin_b; }
@@ -33,7 +33,7 @@ class HBridgeFan : public Component, public fan::Fan {
output::FloatOutput *pin_b_;
output::FloatOutput *enable_{nullptr};
output::BinaryOutput *oscillating_{nullptr};
uint8_t speed_count_{};
int speed_count_{};
DecayMode decay_mode_{DECAY_MODE_SLOW};
fan::FanTraits traits_;
std::vector<const char *> preset_modes_{};

View File

@@ -1,16 +1,20 @@
#include "hlk_fm22x.h"
#include "esphome/core/log.h"
#include "esphome/core/helpers.h"
#include <array>
#include <cinttypes>
namespace esphome::hlk_fm22x {
static const char *const TAG = "hlk_fm22x";
// Maximum response size is 36 bytes (VERIFY reply: face_id + 32-byte name)
static constexpr size_t HLK_FM22X_MAX_RESPONSE_SIZE = 36;
void HlkFm22xComponent::setup() {
ESP_LOGCONFIG(TAG, "Setting up HLK-FM22X...");
this->set_enrolling_(false);
while (this->available() > 0) {
while (this->available()) {
this->read();
}
this->defer([this]() { this->send_command_(HlkFm22xCommand::GET_STATUS); });
@@ -31,7 +35,7 @@ void HlkFm22xComponent::update() {
}
void HlkFm22xComponent::enroll_face(const std::string &name, HlkFm22xFaceDirection direction) {
if (name.length() > HLK_FM22X_NAME_SIZE - 1) {
if (name.length() > 31) {
ESP_LOGE(TAG, "enroll_face(): name too long '%s'", name.c_str());
return;
}
@@ -84,7 +88,7 @@ void HlkFm22xComponent::send_command_(HlkFm22xCommand command, const uint8_t *da
}
this->wait_cycles_ = 0;
this->active_command_ = command;
while (this->available() > 0)
while (this->available())
this->read();
this->write((uint8_t) (START_CODE >> 8));
this->write((uint8_t) (START_CODE & 0xFF));
@@ -133,24 +137,17 @@ void HlkFm22xComponent::recv_command_() {
checksum ^= byte;
length |= byte;
if (length > HLK_FM22X_MAX_RESPONSE_SIZE) {
ESP_LOGE(TAG, "Response too large: %u bytes", length);
// Discard exactly the remaining payload and checksum for this frame
for (uint16_t i = 0; i < length + 1 && this->available() > 0; ++i)
this->read();
return;
}
std::vector<uint8_t> data;
data.reserve(length);
for (uint16_t idx = 0; idx < length; ++idx) {
byte = this->read();
checksum ^= byte;
this->recv_buf_[idx] = byte;
data.push_back(byte);
}
#if ESPHOME_LOG_LEVEL >= ESPHOME_LOG_LEVEL_VERBOSE
char hex_buf[format_hex_pretty_size(HLK_FM22X_MAX_RESPONSE_SIZE)];
ESP_LOGV(TAG, "Recv type: 0x%.2X, data: %s", response_type,
format_hex_pretty_to(hex_buf, this->recv_buf_.data(), length));
ESP_LOGV(TAG, "Recv type: 0x%.2X, data: %s", response_type, format_hex_pretty_to(hex_buf, data.data(), data.size()));
#endif
byte = this->read();
@@ -160,10 +157,10 @@ void HlkFm22xComponent::recv_command_() {
}
switch (response_type) {
case HlkFm22xResponseType::NOTE:
this->handle_note_(this->recv_buf_.data(), length);
this->handle_note_(data);
break;
case HlkFm22xResponseType::REPLY:
this->handle_reply_(this->recv_buf_.data(), length);
this->handle_reply_(data);
break;
default:
ESP_LOGW(TAG, "Unexpected response type: 0x%.2X", response_type);
@@ -171,15 +168,11 @@ void HlkFm22xComponent::recv_command_() {
}
}
void HlkFm22xComponent::handle_note_(const uint8_t *data, size_t length) {
if (length < 1) {
ESP_LOGE(TAG, "Empty note data");
return;
}
void HlkFm22xComponent::handle_note_(const std::vector<uint8_t> &data) {
switch (data[0]) {
case HlkFm22xNoteType::FACE_STATE:
if (length < 17) {
ESP_LOGE(TAG, "Invalid face note data size: %zu", length);
if (data.size() < 17) {
ESP_LOGE(TAG, "Invalid face note data size: %u", data.size());
break;
}
{
@@ -216,13 +209,9 @@ void HlkFm22xComponent::handle_note_(const uint8_t *data, size_t length) {
}
}
void HlkFm22xComponent::handle_reply_(const uint8_t *data, size_t length) {
void HlkFm22xComponent::handle_reply_(const std::vector<uint8_t> &data) {
auto expected = this->active_command_;
this->active_command_ = HlkFm22xCommand::NONE;
if (length < 2) {
ESP_LOGE(TAG, "Reply too short: %zu bytes", length);
return;
}
if (data[0] != (uint8_t) expected) {
ESP_LOGE(TAG, "Unexpected response command. Expected: 0x%.2X, Received: 0x%.2X", expected, data[0]);
return;
@@ -249,20 +238,16 @@ void HlkFm22xComponent::handle_reply_(const uint8_t *data, size_t length) {
}
switch (expected) {
case HlkFm22xCommand::VERIFY: {
if (length < 4 + HLK_FM22X_NAME_SIZE) {
ESP_LOGE(TAG, "VERIFY response too short: %zu bytes", length);
break;
}
int16_t face_id = ((int16_t) data[2] << 8) | data[3];
const char *name_ptr = reinterpret_cast<const char *>(data + 4);
ESP_LOGD(TAG, "Face verified. ID: %d, name: %.*s", face_id, (int) HLK_FM22X_NAME_SIZE, name_ptr);
std::string name(data.begin() + 4, data.begin() + 36);
ESP_LOGD(TAG, "Face verified. ID: %d, name: %s", face_id, name.c_str());
if (this->last_face_id_sensor_ != nullptr) {
this->last_face_id_sensor_->publish_state(face_id);
}
if (this->last_face_name_text_sensor_ != nullptr) {
this->last_face_name_text_sensor_->publish_state(name_ptr, HLK_FM22X_NAME_SIZE);
this->last_face_name_text_sensor_->publish_state(name);
}
this->face_scan_matched_callback_.call(face_id, std::string(name_ptr, HLK_FM22X_NAME_SIZE));
this->face_scan_matched_callback_.call(face_id, name);
break;
}
case HlkFm22xCommand::ENROLL: {
@@ -281,8 +266,9 @@ void HlkFm22xComponent::handle_reply_(const uint8_t *data, size_t length) {
this->defer([this]() { this->send_command_(HlkFm22xCommand::GET_VERSION); });
break;
case HlkFm22xCommand::GET_VERSION:
if (this->version_text_sensor_ != nullptr && length > 2) {
this->version_text_sensor_->publish_state(reinterpret_cast<const char *>(data + 2), length - 2);
if (this->version_text_sensor_ != nullptr) {
std::string version(data.begin() + 2, data.end());
this->version_text_sensor_->publish_state(version);
}
this->defer([this]() { this->get_face_count_(); });
break;

View File

@@ -7,15 +7,12 @@
#include "esphome/components/text_sensor/text_sensor.h"
#include "esphome/components/uart/uart.h"
#include <array>
#include <utility>
#include <vector>
namespace esphome::hlk_fm22x {
static const uint16_t START_CODE = 0xEFAA;
static constexpr size_t HLK_FM22X_NAME_SIZE = 32;
// Maximum response payload: command(1) + result(1) + face_id(2) + name(32) = 36
static constexpr size_t HLK_FM22X_MAX_RESPONSE_SIZE = 36;
enum HlkFm22xCommand {
NONE = 0x00,
RESET = 0x10,
@@ -121,11 +118,10 @@ class HlkFm22xComponent : public PollingComponent, public uart::UARTDevice {
void get_face_count_();
void send_command_(HlkFm22xCommand command, const uint8_t *data = nullptr, size_t size = 0);
void recv_command_();
void handle_note_(const uint8_t *data, size_t length);
void handle_reply_(const uint8_t *data, size_t length);
void handle_note_(const std::vector<uint8_t> &data);
void handle_reply_(const std::vector<uint8_t> &data);
void set_enrolling_(bool enrolling);
std::array<uint8_t, HLK_FM22X_MAX_RESPONSE_SIZE> recv_buf_;
HlkFm22xCommand active_command_ = HlkFm22xCommand::NONE;
uint16_t wait_cycles_ = 0;
sensor::Sensor *face_count_sensor_{nullptr};

View File

@@ -94,7 +94,10 @@ CONFIG_SCHEMA = cv.Schema(
async def to_code(config):
if CORE.is_esp32:
include_builtin_idf_component("esp_driver_pcnt")
# Re-enable ESP-IDF's legacy driver component (excluded by default to save compile time)
# HLW8012 uses pulse_counter's PCNT storage which requires driver/pcnt.h
# TODO: Remove this once pulse_counter migrates to new PCNT API (driver/pulse_cnt.h)
include_builtin_idf_component("driver")
var = cg.new_Pvariable(config[CONF_ID])
await cg.register_component(var, config)

View File

@@ -103,42 +103,6 @@ inline bool is_success(int const status) { return status >= HTTP_STATUS_OK && st
* - ESP-IDF: blocking reads, 0 only returned when all content read
* - Arduino: non-blocking, 0 means "no data yet" or "all content read"
*
* Chunked responses that complete in a reasonable time work correctly on both
* platforms. The limitation below applies only to *streaming* chunked
* responses where data arrives slowly over a long period.
*
* Streaming chunked responses are NOT supported (all platforms):
* The read helpers (http_read_loop_result, http_read_fully) block the main
* event loop until all response data is received. For streaming responses
* where data trickles in slowly (e.g., TTS streaming via ffmpeg proxy),
* this starves the event loop on both ESP-IDF and Arduino. If data arrives
* just often enough to avoid the caller's timeout, the loop runs
* indefinitely. If data stops entirely, ESP-IDF fails with
* -ESP_ERR_HTTP_EAGAIN (transport timeout) while Arduino spins with
* delay(1) until the caller's timeout fires. Supporting streaming requires
* a non-blocking incremental read pattern that yields back to the event
* loop between chunks. Components that need streaming should use
* esp_http_client directly on a separate FreeRTOS task with
* esp_http_client_is_complete_data_received() for completion detection
* (see audio_reader.cpp for an example).
*
* Chunked transfer encoding - platform differences:
* - ESP-IDF HttpContainer:
* HttpContainerIDF overrides is_read_complete() to call
* esp_http_client_is_complete_data_received(), which is the
* authoritative completion check for both chunked and non-chunked
* transfers. When esp_http_client_read() returns 0 for a completed
* chunked response, read() returns 0 and is_read_complete() returns
* true, so callers get COMPLETE from http_read_loop_result().
*
* - Arduino HttpContainer:
* Chunked responses are decoded internally (see
* HttpContainerArduino::read_chunked_()). When the final chunk arrives,
* is_chunked_ is cleared and content_length is set to bytes_read_.
* Completion is then detected via is_read_complete(), and a subsequent
* read() returns 0 to indicate "all content read" (not
* HTTP_ERROR_CONNECTION_CLOSED).
*
* Use the helper functions below instead of checking return values directly:
* - http_read_loop_result(): for manual loops with per-chunk processing
* - http_read_fully(): for simple "read N bytes into buffer" operations
@@ -240,13 +204,9 @@ class HttpContainer : public Parented<HttpRequestComponent> {
size_t get_bytes_read() const { return this->bytes_read_; }
/// Check if all expected content has been read.
/// Base implementation handles non-chunked responses and status-code-based no-body checks.
/// Platform implementations may override for chunked completion detection:
/// - ESP-IDF: overrides to call esp_http_client_is_complete_data_received() for chunked.
/// - Arduino: read_chunked_() clears is_chunked_ and sets content_length on the final
/// chunk, after which the base implementation detects completion.
virtual bool is_read_complete() const {
/// Check if all expected content has been read
/// For chunked responses, returns false (completion detected via read() returning error/EOF)
bool is_read_complete() const {
// Per RFC 9112, these responses have no body:
// - 1xx (Informational), 204 No Content, 205 Reset Content, 304 Not Modified
if ((this->status_code >= 100 && this->status_code < 200) || this->status_code == HTTP_STATUS_NO_CONTENT ||

View File

@@ -218,50 +218,32 @@ std::shared_ptr<HttpContainer> HttpRequestIDF::perform(const std::string &url, c
return container;
}
bool HttpContainerIDF::is_read_complete() const {
// Base class handles no-body status codes and non-chunked content_length completion
if (HttpContainer::is_read_complete()) {
return true;
}
// For chunked responses, use the authoritative ESP-IDF completion check
return this->is_chunked_ && esp_http_client_is_complete_data_received(this->client_);
}
// ESP-IDF HTTP read implementation (blocking mode)
//
// WARNING: Return values differ from BSD sockets! See http_request.h for full documentation.
//
// esp_http_client_read() in blocking mode returns:
// > 0: bytes read
// 0: all chunked data received (is_chunk_complete true) or connection closed
// -ESP_ERR_HTTP_EAGAIN: transport timeout, no data available yet
// 0: connection closed (end of stream)
// < 0: error
//
// We normalize to HttpContainer::read() contract:
// > 0: bytes read
// 0: all content read (for both content_length-based and chunked completion)
// 0: all content read (only returned when content_length is known and fully read)
// < 0: error/connection closed
//
// Note on chunked transfer encoding:
// esp_http_client_fetch_headers() returns 0 for chunked responses (no Content-Length header).
// When esp_http_client_read() returns 0 for a chunked response, is_read_complete() calls
// esp_http_client_is_complete_data_received() to distinguish successful completion from
// connection errors. Callers use http_read_loop_result() which checks is_read_complete()
// to return COMPLETE for successful chunked EOF.
//
// Streaming chunked responses are not supported (see http_request.h for details).
// When data stops arriving, esp_http_client_read() returns -ESP_ERR_HTTP_EAGAIN
// after its internal transport timeout (configured via timeout_ms) expires.
// This is passed through as a negative return value, which callers treat as an error.
// We handle this by skipping the content_length check when content_length is 0,
// allowing esp_http_client_read() to handle chunked decoding internally and signal EOF
// by returning 0.
int HttpContainerIDF::read(uint8_t *buf, size_t max_len) {
const uint32_t start = millis();
watchdog::WatchdogManager wdm(this->parent_->get_watchdog_timeout());
// Check if we've already read all expected content (non-chunked and no-body only).
// Use the base class check here, NOT the override: esp_http_client_is_complete_data_received()
// returns true as soon as all data arrives from the network, but data may still be in
// the client's internal buffer waiting to be consumed by esp_http_client_read().
if (HttpContainer::is_read_complete()) {
// Check if we've already read all expected content (non-chunked only)
// For chunked responses (content_length == 0), esp_http_client_read() handles EOF
if (this->is_read_complete()) {
return 0; // All content read successfully
}
@@ -276,18 +258,15 @@ int HttpContainerIDF::read(uint8_t *buf, size_t max_len) {
return read_len_or_error;
}
// esp_http_client_read() returns 0 when:
// - Known content_length: connection closed before all data received (error)
// - Chunked encoding: all chunks received (is_chunk_complete true, genuine EOF)
//
// Return 0 in both cases. Callers use http_read_loop_result() which calls
// is_read_complete() to distinguish these:
// - Chunked complete: is_read_complete() returns true (via
// esp_http_client_is_complete_data_received()), caller gets COMPLETE
// - Non-chunked incomplete: is_read_complete() returns false, caller
// eventually gets TIMEOUT (since no more data arrives)
// esp_http_client_read() returns 0 in two cases:
// 1. Known content_length: connection closed before all data received (error)
// 2. Chunked encoding (content_length == 0): end of stream reached (EOF)
// For case 1, returning HTTP_ERROR_CONNECTION_CLOSED is correct.
// For case 2, 0 indicates that all chunked data has already been delivered
// in previous successful read() calls, so treating this as a closed
// connection does not cause any loss of response data.
if (read_len_or_error == 0) {
return 0;
return HTTP_ERROR_CONNECTION_CLOSED;
}
// Negative value - error, return the actual error code for debugging

View File

@@ -16,7 +16,6 @@ class HttpContainerIDF : public HttpContainer {
HttpContainerIDF(esp_http_client_handle_t client) : client_(client) {}
int read(uint8_t *buf, size_t max_len) override;
void end() override;
bool is_read_complete() const override;
/// @brief Feeds the watchdog timer if the executing task has one attached
void feed_wdt();

View File

@@ -90,14 +90,16 @@ void HttpRequestUpdate::update_task(void *params) {
UPDATE_RETURN;
}
size_t read_index = container->get_bytes_read();
size_t content_length = container->content_length;
container->end();
container.reset(); // Release ownership of the container's shared_ptr
bool valid = false;
{ // Scope to ensure JsonDocument is destroyed before deallocating buffer
valid = json::parse_json(data, read_index, [this_update](JsonObject root) -> bool {
{ // Ensures the response string falls out of scope and deallocates before the task ends
std::string response((char *) data, read_index);
allocator.deallocate(data, container->content_length);
container->end();
container.reset(); // Release ownership of the container's shared_ptr
valid = json::parse_json(response, [this_update](JsonObject root) -> bool {
if (!root[ESPHOME_F("name")].is<const char *>() || !root[ESPHOME_F("version")].is<const char *>() ||
!root[ESPHOME_F("builds")].is<JsonArray>()) {
ESP_LOGE(TAG, "Manifest does not contain required fields");
@@ -135,7 +137,6 @@ void HttpRequestUpdate::update_task(void *params) {
return false;
});
}
allocator.deallocate(data, content_length);
if (!valid) {
ESP_LOGE(TAG, "Failed to parse JSON from %s", this_update->source_url_.c_str());
@@ -156,12 +157,17 @@ void HttpRequestUpdate::update_task(void *params) {
}
}
{ // Ensures the current version string falls out of scope and deallocates before the task ends
std::string current_version;
#ifdef ESPHOME_PROJECT_VERSION
this_update->update_info_.current_version = ESPHOME_PROJECT_VERSION;
current_version = ESPHOME_PROJECT_VERSION;
#else
this_update->update_info_.current_version = ESPHOME_VERSION;
current_version = ESPHOME_VERSION;
#endif
this_update->update_info_.current_version = current_version;
}
bool trigger_update_available = false;
if (this_update->update_info_.latest_version.empty() ||

View File

@@ -119,7 +119,7 @@ void IDFI2CBus::dump_config() {
if (s.second) {
ESP_LOGCONFIG(TAG, "Found device at address 0x%02X", s.first);
} else {
ESP_LOGCONFIG(TAG, "Unknown error at address 0x%02X", s.first);
ESP_LOGE(TAG, "Unknown error at address 0x%02X", s.first);
}
}
}

View File

@@ -267,26 +267,16 @@ bool ImprovSerialComponent::parse_improv_payload_(improv::ImprovCommand &command
for (auto &scan : results) {
if (scan.get_is_hidden())
continue;
const char *ssid_cstr = scan.get_ssid().c_str();
// Check if we've already sent this SSID
bool duplicate = false;
for (const auto &seen : networks) {
if (strcmp(seen.c_str(), ssid_cstr) == 0) {
duplicate = true;
break;
}
}
if (duplicate)
const std::string &ssid = scan.get_ssid();
if (std::find(networks.begin(), networks.end(), ssid) != networks.end())
continue;
// Only allocate std::string after confirming it's not a duplicate
std::string ssid(ssid_cstr);
// Send each ssid separately to avoid overflowing the buffer
char rssi_buf[5]; // int8_t: -128 to 127, max 4 chars + null
*int8_to_str(rssi_buf, scan.get_rssi()) = '\0';
std::vector<uint8_t> data =
improv::build_rpc_response(improv::GET_WIFI_NETWORKS, {ssid, rssi_buf, YESNO(scan.get_with_auth())}, false);
this->send_response_(data);
networks.push_back(std::move(ssid));
networks.push_back(ssid);
}
// Send empty response to signify the end of the list.
std::vector<uint8_t> data =

View File

@@ -15,7 +15,7 @@ static const char *const TAG = "json";
static SpiRamAllocator global_json_allocator;
#endif
SerializationBuffer<> build_json(const json_build_t &f) {
std::string build_json(const json_build_t &f) {
// NOLINTBEGIN(clang-analyzer-cplusplus.NewDeleteLeaks) false positive with ArduinoJson
JsonBuilder builder;
JsonObject root = builder.root();
@@ -25,13 +25,8 @@ SerializationBuffer<> build_json(const json_build_t &f) {
}
bool parse_json(const std::string &data, const json_parse_t &f) {
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDeleteLeaks) false positive with ArduinoJson
return parse_json(reinterpret_cast<const uint8_t *>(data.c_str()), data.size(), f);
}
bool parse_json(const uint8_t *data, size_t len, const json_parse_t &f) {
// NOLINTBEGIN(clang-analyzer-cplusplus.NewDeleteLeaks) false positive with ArduinoJson
JsonDocument doc = parse_json(data, len);
JsonDocument doc = parse_json(reinterpret_cast<const uint8_t *>(data.c_str()), data.size());
if (doc.overflowed() || doc.isNull())
return false;
return f(doc.as<JsonObject>());
@@ -66,62 +61,14 @@ JsonDocument parse_json(const uint8_t *data, size_t len) {
// NOLINTEND(clang-analyzer-cplusplus.NewDeleteLeaks)
}
SerializationBuffer<> JsonBuilder::serialize() {
// ===========================================================================================
// CRITICAL: NRVO (Named Return Value Optimization) - DO NOT REFACTOR WITHOUT UNDERSTANDING
// ===========================================================================================
//
// This function is carefully structured to enable NRVO. The compiler constructs `result`
// directly in the caller's stack frame, eliminating the move constructor call entirely.
//
// WITHOUT NRVO: Each return would trigger SerializationBuffer's move constructor, which
// must memcpy up to 768 bytes of stack buffer content. This happens on EVERY JSON
// serialization (sensor updates, web server responses, MQTT publishes, etc.).
//
// WITH NRVO: Zero memcpy, zero move constructor overhead. The buffer lives directly
// where the caller needs it.
//
// Requirements for NRVO to work:
// 1. Single named variable (`result`) returned from ALL paths
// 2. All paths must return the SAME variable (not different variables)
// 3. No std::move() on the return statement
//
// If you must modify this function:
// - Keep a single `result` variable declared at the top
// - All code paths must return `result` (not a different variable)
// - Verify NRVO still works by checking the disassembly for move constructor calls
// - Test: objdump -d -C firmware.elf | grep "SerializationBuffer.*SerializationBuffer"
// Should show only destructor, NOT move constructor
//
// Why we avoid measureJson(): It instantiates DummyWriter templates adding ~1KB flash.
// Instead, try stack buffer first. 768 bytes covers 99.9% of JSON payloads (sensors ~200B,
// lights ~170B, climate ~700B). Only entities with 40+ options exceed this.
//
// ===========================================================================================
constexpr size_t buf_size = SerializationBuffer<>::BUFFER_SIZE;
SerializationBuffer<> result(buf_size - 1); // Max content size (reserve 1 for null)
std::string JsonBuilder::serialize() {
if (doc_.overflowed()) {
ESP_LOGE(TAG, "JSON document overflow");
auto *buf = result.data_writable_();
buf[0] = '{';
buf[1] = '}';
buf[2] = '\0';
result.set_size_(2);
return result;
return "{}";
}
size_t size = serializeJson(doc_, result.data_writable_(), buf_size);
if (size < buf_size) {
// Fits in stack buffer - update size to actual length
result.set_size_(size);
return result;
}
// Needs heap allocation - reallocate and serialize again with exact size
result.reallocate_heap_(size);
serializeJson(doc_, result.data_writable_(), size + 1);
return result;
std::string output;
serializeJson(doc_, output);
return output;
}
} // namespace json

View File

@@ -1,7 +1,5 @@
#pragma once
#include <cstring>
#include <string>
#include <vector>
#include "esphome/core/defines.h"
@@ -16,108 +14,6 @@
namespace esphome {
namespace json {
/// Buffer for JSON serialization that uses stack allocation for small payloads.
/// Template parameter STACK_SIZE specifies the stack buffer size (default 768 bytes).
/// Supports move semantics for efficient return-by-value.
template<size_t STACK_SIZE = 768> class SerializationBuffer {
public:
static constexpr size_t BUFFER_SIZE = STACK_SIZE; ///< Stack buffer size for this instantiation
/// Construct with known size (typically from measureJson)
explicit SerializationBuffer(size_t size) : size_(size) {
if (size + 1 <= STACK_SIZE) {
buffer_ = stack_buffer_;
} else {
heap_buffer_ = new char[size + 1];
buffer_ = heap_buffer_;
}
buffer_[0] = '\0';
}
~SerializationBuffer() { delete[] heap_buffer_; }
// Move constructor - works with same template instantiation
SerializationBuffer(SerializationBuffer &&other) noexcept : heap_buffer_(other.heap_buffer_), size_(other.size_) {
if (other.buffer_ == other.stack_buffer_) {
// Stack buffer - must copy content
std::memcpy(stack_buffer_, other.stack_buffer_, size_ + 1);
buffer_ = stack_buffer_;
} else {
// Heap buffer - steal ownership
buffer_ = heap_buffer_;
other.heap_buffer_ = nullptr;
}
// Leave moved-from object in valid empty state
other.stack_buffer_[0] = '\0';
other.buffer_ = other.stack_buffer_;
other.size_ = 0;
}
// Move assignment
SerializationBuffer &operator=(SerializationBuffer &&other) noexcept {
if (this != &other) {
delete[] heap_buffer_;
heap_buffer_ = other.heap_buffer_;
size_ = other.size_;
if (other.buffer_ == other.stack_buffer_) {
std::memcpy(stack_buffer_, other.stack_buffer_, size_ + 1);
buffer_ = stack_buffer_;
} else {
buffer_ = heap_buffer_;
other.heap_buffer_ = nullptr;
}
// Leave moved-from object in valid empty state
other.stack_buffer_[0] = '\0';
other.buffer_ = other.stack_buffer_;
other.size_ = 0;
}
return *this;
}
// Delete copy operations
SerializationBuffer(const SerializationBuffer &) = delete;
SerializationBuffer &operator=(const SerializationBuffer &) = delete;
/// Get null-terminated C string
const char *c_str() const { return buffer_; }
/// Get data pointer
const char *data() const { return buffer_; }
/// Get string length (excluding null terminator)
size_t size() const { return size_; }
/// Implicit conversion to std::string for backward compatibility
/// WARNING: This allocates a new std::string on the heap. Prefer using
/// c_str() or data()/size() directly when possible to avoid allocation.
operator std::string() const { return std::string(buffer_, size_); } // NOLINT(google-explicit-constructor)
private:
friend class JsonBuilder; ///< Allows JsonBuilder::serialize() to call private methods
/// Get writable buffer (for serialization)
char *data_writable_() { return buffer_; }
/// Set actual size after serialization (must not exceed allocated size)
/// Also ensures null termination for c_str() safety
void set_size_(size_t size) {
size_ = size;
buffer_[size] = '\0';
}
/// Reallocate to heap buffer with new size (for when stack buffer is too small)
/// This invalidates any previous buffer content. Used by JsonBuilder::serialize().
void reallocate_heap_(size_t size) {
delete[] heap_buffer_;
heap_buffer_ = new char[size + 1];
buffer_ = heap_buffer_;
size_ = size;
buffer_[0] = '\0';
}
char stack_buffer_[STACK_SIZE];
char *heap_buffer_{nullptr};
char *buffer_;
size_t size_;
};
#ifdef USE_PSRAM
// Build an allocator for the JSON Library using the RAMAllocator class
// This is only compiled when PSRAM is enabled
@@ -150,13 +46,10 @@ using json_parse_t = std::function<bool(JsonObject)>;
using json_build_t = std::function<void(JsonObject)>;
/// Build a JSON string with the provided json build function.
/// Returns SerializationBuffer for stack-first allocation; implicitly converts to std::string.
SerializationBuffer<> build_json(const json_build_t &f);
std::string build_json(const json_build_t &f);
/// Parse a JSON string and run the provided json parse function if it's valid.
bool parse_json(const std::string &data, const json_parse_t &f);
/// Parse JSON from raw bytes and run the provided json parse function if it's valid.
bool parse_json(const uint8_t *data, size_t len, const json_parse_t &f);
/// Parse a JSON string and return the root JsonDocument (or an unbound object on error)
JsonDocument parse_json(const uint8_t *data, size_t len);
@@ -176,9 +69,7 @@ class JsonBuilder {
return root_;
}
/// Serialize the JSON document to a SerializationBuffer (stack-first allocation)
/// Uses 768-byte stack buffer by default, falls back to heap for larger JSON
SerializationBuffer<> serialize();
std::string serialize();
private:
#ifdef USE_PSRAM

View File

@@ -11,7 +11,7 @@ static const char *const TAG = "kuntze";
static const uint8_t CMD_READ_REG = 0x03;
static const uint16_t REGISTER[] = {4136, 4160, 4680, 6000, 4688, 4728, 5832};
// Maximum bytes to log for Modbus responses (2 registers = 4 bytes, plus byte count = 5 bytes)
// Maximum bytes to log for Modbus responses (2 registers = 4, plus count = 5)
static constexpr size_t KUNTZE_MAX_LOG_BYTES = 8;
void Kuntze::on_modbus_data(const std::vector<uint8_t> &data) {

View File

@@ -276,10 +276,10 @@ void LD2410Component::restart_and_read_all_info() {
void LD2410Component::loop() {
// Read all available bytes in batches to reduce UART call overhead.
size_t avail = this->available();
int avail = this->available();
uint8_t buf[MAX_LINE_LENGTH];
while (avail > 0) {
size_t to_read = std::min(avail, sizeof(buf));
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
if (!this->read_array(buf, to_read)) {
break;
}

View File

@@ -311,10 +311,10 @@ void LD2412Component::restart_and_read_all_info() {
void LD2412Component::loop() {
// Read all available bytes in batches to reduce UART call overhead.
size_t avail = this->available();
int avail = this->available();
uint8_t buf[MAX_LINE_LENGTH];
while (avail > 0) {
size_t to_read = std::min(avail, sizeof(buf));
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
if (!this->read_array(buf, to_read)) {
break;
}

View File

@@ -335,10 +335,9 @@ void LD2420Component::revert_config_action() {
void LD2420Component::loop() {
// If there is a active send command do not process it here, the send command call will handle it.
if (this->cmd_active_) {
return;
while (!this->cmd_active_ && this->available()) {
this->readline_(this->read(), this->buffer_data_, MAX_LINE_LENGTH);
}
this->read_batch_(this->buffer_data_);
}
void LD2420Component::update_radar_data(uint16_t const *gate_energy, uint8_t sample_number) {
@@ -540,23 +539,6 @@ void LD2420Component::handle_simple_mode_(const uint8_t *inbuf, int len) {
}
}
void LD2420Component::read_batch_(std::span<uint8_t, MAX_LINE_LENGTH> buffer) {
// Read all available bytes in batches to reduce UART call overhead.
size_t avail = this->available();
uint8_t buf[MAX_LINE_LENGTH];
while (avail > 0) {
size_t to_read = std::min(avail, sizeof(buf));
if (!this->read_array(buf, to_read)) {
break;
}
avail -= to_read;
for (size_t i = 0; i < to_read; i++) {
this->readline_(buf[i], buffer.data(), buffer.size());
}
}
}
void LD2420Component::handle_ack_data_(uint8_t *buffer, int len) {
this->cmd_reply_.command = buffer[CMD_FRAME_COMMAND];
this->cmd_reply_.length = buffer[CMD_FRAME_DATA_LENGTH];

View File

@@ -4,7 +4,6 @@
#include "esphome/components/uart/uart.h"
#include "esphome/core/automation.h"
#include "esphome/core/helpers.h"
#include <span>
#ifdef USE_TEXT_SENSOR
#include "esphome/components/text_sensor/text_sensor.h"
#endif
@@ -166,7 +165,6 @@ class LD2420Component : public Component, public uart::UARTDevice {
void handle_energy_mode_(uint8_t *buffer, int len);
void handle_ack_data_(uint8_t *buffer, int len);
void readline_(int rx_data, uint8_t *buffer, int len);
void read_batch_(std::span<uint8_t, MAX_LINE_LENGTH> buffer);
void set_calibration_(bool state) { this->calibration_ = state; };
bool get_calibration_() { return this->calibration_; };

View File

@@ -1,8 +1,7 @@
from esphome import automation
import esphome.codegen as cg
from esphome.components import uart
import esphome.config_validation as cv
from esphome.const import CONF_ID, CONF_ON_DATA, CONF_THROTTLE, CONF_TRIGGER_ID
from esphome.const import CONF_ID, CONF_THROTTLE
AUTO_LOAD = ["ld24xx"]
DEPENDENCIES = ["uart"]
@@ -12,8 +11,6 @@ MULTI_CONF = True
ld2450_ns = cg.esphome_ns.namespace("ld2450")
LD2450Component = ld2450_ns.class_("LD2450Component", cg.Component, uart.UARTDevice)
LD2450DataTrigger = ld2450_ns.class_("LD2450DataTrigger", automation.Trigger.template())
CONF_LD2450_ID = "ld2450_id"
CONFIG_SCHEMA = cv.All(
@@ -23,11 +20,6 @@ CONFIG_SCHEMA = cv.All(
cv.Optional(CONF_THROTTLE): cv.invalid(
f"{CONF_THROTTLE} has been removed; use per-sensor filters, instead"
),
cv.Optional(CONF_ON_DATA): automation.validate_automation(
{
cv.GenerateID(CONF_TRIGGER_ID): cv.declare_id(LD2450DataTrigger),
}
),
}
)
.extend(uart.UART_DEVICE_SCHEMA)
@@ -53,6 +45,3 @@ async def to_code(config):
var = cg.new_Pvariable(config[CONF_ID])
await cg.register_component(var, config)
await uart.register_uart_device(var, config)
for conf in config.get(CONF_ON_DATA, []):
trigger = cg.new_Pvariable(conf[CONF_TRIGGER_ID], var)
await automation.build_automation(trigger, [], conf)

View File

@@ -277,10 +277,10 @@ void LD2450Component::dump_config() {
void LD2450Component::loop() {
// Read all available bytes in batches to reduce UART call overhead.
size_t avail = this->available();
int avail = this->available();
uint8_t buf[MAX_LINE_LENGTH];
while (avail > 0) {
size_t to_read = std::min(avail, sizeof(buf));
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
if (!this->read_array(buf, to_read)) {
break;
}
@@ -413,10 +413,6 @@ void LD2450Component::restart_and_read_all_info() {
this->set_timeout(1500, [this]() { this->read_all_info(); });
}
void LD2450Component::add_on_data_callback(std::function<void()> &&callback) {
this->data_callback_.add(std::move(callback));
}
// Send command with values to LD2450
void LD2450Component::send_command_(uint8_t command, const uint8_t *command_value, uint8_t command_value_len) {
ESP_LOGV(TAG, "Sending COMMAND %02X", command);
@@ -617,8 +613,6 @@ void LD2450Component::handle_periodic_data_() {
this->still_presence_millis_ = App.get_loop_component_start_time();
}
#endif
this->data_callback_.call();
}
bool LD2450Component::handle_ack_data_() {

View File

@@ -141,9 +141,6 @@ class LD2450Component : public Component, public uart::UARTDevice {
int32_t zone2_x1, int32_t zone2_y1, int32_t zone2_x2, int32_t zone2_y2, int32_t zone3_x1,
int32_t zone3_y1, int32_t zone3_x2, int32_t zone3_y2);
/// Add a callback that will be called after each successfully processed periodic data frame.
void add_on_data_callback(std::function<void()> &&callback);
protected:
void send_command_(uint8_t command_str, const uint8_t *command_value, uint8_t command_value_len);
void set_config_mode_(bool enable);
@@ -193,15 +190,6 @@ class LD2450Component : public Component, public uart::UARTDevice {
#ifdef USE_TEXT_SENSOR
std::array<text_sensor::TextSensor *, 3> direction_text_sensors_{};
#endif
LazyCallbackManager<void()> data_callback_;
};
class LD2450DataTrigger : public Trigger<> {
public:
explicit LD2450DataTrigger(LD2450Component *parent) {
parent->add_on_data_callback([this]() { this->trigger(); });
}
};
} // namespace esphome::ld2450

View File

@@ -193,14 +193,14 @@ def _notify_old_style(config):
# The dev and latest branches will be at *least* this version, which is what matters.
# Use GitHub releases directly to avoid PlatformIO moderation delays.
ARDUINO_VERSIONS = {
"dev": (cv.Version(1, 12, 1), "https://github.com/libretiny-eu/libretiny.git"),
"dev": (cv.Version(1, 11, 0), "https://github.com/libretiny-eu/libretiny.git"),
"latest": (
cv.Version(1, 12, 1),
"https://github.com/libretiny-eu/libretiny.git#v1.12.1",
cv.Version(1, 11, 0),
"https://github.com/libretiny-eu/libretiny.git#v1.11.0",
),
"recommended": (
cv.Version(1, 12, 1),
"https://github.com/libretiny-eu/libretiny.git#v1.12.1",
cv.Version(1, 11, 0),
"https://github.com/libretiny-eu/libretiny.git#v1.11.0",
),
}

View File

@@ -18,7 +18,16 @@ static constexpr size_t KEY_BUFFER_SIZE = 12;
struct NVSData {
uint32_t key;
SmallInlineBuffer<8> data; // Most prefs fit in 8 bytes (covers fan, cover, select, etc.)
std::unique_ptr<uint8_t[]> data;
size_t len;
void set_data(const uint8_t *src, size_t size) {
if (!this->data || this->len != size) {
this->data = std::make_unique<uint8_t[]>(size);
this->len = size;
}
memcpy(this->data.get(), src, size);
}
};
static std::vector<NVSData> s_pending_save; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
@@ -33,14 +42,14 @@ class LibreTinyPreferenceBackend : public ESPPreferenceBackend {
// try find in pending saves and update that
for (auto &obj : s_pending_save) {
if (obj.key == this->key) {
obj.data.set(data, len);
obj.set_data(data, len);
return true;
}
}
NVSData save{};
save.key = this->key;
save.data.set(data, len);
s_pending_save.push_back(std::move(save));
save.set_data(data, len);
s_pending_save.emplace_back(std::move(save));
ESP_LOGVV(TAG, "s_pending_save: key: %" PRIu32 ", len: %zu", this->key, len);
return true;
}
@@ -49,11 +58,11 @@ class LibreTinyPreferenceBackend : public ESPPreferenceBackend {
// try find in pending saves and load from that
for (auto &obj : s_pending_save) {
if (obj.key == this->key) {
if (obj.data.size() != len) {
if (obj.len != len) {
// size mismatch
return false;
}
memcpy(data, obj.data.data(), len);
memcpy(data, obj.data.get(), len);
return true;
}
}
@@ -117,11 +126,11 @@ class LibreTinyPreferences : public ESPPreferences {
snprintf(key_str, sizeof(key_str), "%" PRIu32, save.key);
ESP_LOGVV(TAG, "Checking if FDB data %s has changed", key_str);
if (this->is_changed_(&this->db, save, key_str)) {
ESP_LOGV(TAG, "sync: key: %s, len: %zu", key_str, save.data.size());
fdb_blob_make(&this->blob, save.data.data(), save.data.size());
ESP_LOGV(TAG, "sync: key: %s, len: %zu", key_str, save.len);
fdb_blob_make(&this->blob, save.data.get(), save.len);
fdb_err_t err = fdb_kv_set_blob(&this->db, key_str, &this->blob);
if (err != FDB_NO_ERR) {
ESP_LOGV(TAG, "fdb_kv_set_blob('%s', len=%zu) failed: %d", key_str, save.data.size(), err);
ESP_LOGV(TAG, "fdb_kv_set_blob('%s', len=%zu) failed: %d", key_str, save.len, err);
failed++;
last_err = err;
last_key = save.key;
@@ -129,7 +138,7 @@ class LibreTinyPreferences : public ESPPreferences {
}
written++;
} else {
ESP_LOGD(TAG, "FDB data not changed; skipping %" PRIu32 " len=%zu", save.key, save.data.size());
ESP_LOGD(TAG, "FDB data not changed; skipping %" PRIu32 " len=%zu", save.key, save.len);
cached++;
}
s_pending_save.erase(s_pending_save.begin() + i);
@@ -153,7 +162,7 @@ class LibreTinyPreferences : public ESPPreferences {
}
// Check size first - if different, data has changed
if (kv.value_len != to_save.data.size()) {
if (kv.value_len != to_save.len) {
return true;
}
@@ -167,7 +176,7 @@ class LibreTinyPreferences : public ESPPreferences {
}
// Compare the actual data
return memcmp(to_save.data.data(), stored_data.get(), kv.value_len) != 0;
return memcmp(to_save.data.get(), stored_data.get(), kv.value_len) != 0;
}
bool reset() override {

View File

@@ -270,23 +270,22 @@ LightColorValues LightCall::validate_() {
if (this->has_state())
v.set_state(this->state_);
// clamp_and_log_if_invalid already clamps in-place, so assign directly
// to avoid redundant clamp code from the setter being inlined.
#define VALIDATE_AND_APPLY(field, name_str, ...) \
#define VALIDATE_AND_APPLY(field, setter, name_str, ...) \
if (this->has_##field()) { \
clamp_and_log_if_invalid(name, this->field##_, LOG_STR(name_str), ##__VA_ARGS__); \
v.field##_ = this->field##_; \
v.setter(this->field##_); \
}
VALIDATE_AND_APPLY(brightness, "Brightness")
VALIDATE_AND_APPLY(color_brightness, "Color brightness")
VALIDATE_AND_APPLY(red, "Red")
VALIDATE_AND_APPLY(green, "Green")
VALIDATE_AND_APPLY(blue, "Blue")
VALIDATE_AND_APPLY(white, "White")
VALIDATE_AND_APPLY(cold_white, "Cold white")
VALIDATE_AND_APPLY(warm_white, "Warm white")
VALIDATE_AND_APPLY(color_temperature, "Color temperature", traits.get_min_mireds(), traits.get_max_mireds())
VALIDATE_AND_APPLY(brightness, set_brightness, "Brightness")
VALIDATE_AND_APPLY(color_brightness, set_color_brightness, "Color brightness")
VALIDATE_AND_APPLY(red, set_red, "Red")
VALIDATE_AND_APPLY(green, set_green, "Green")
VALIDATE_AND_APPLY(blue, set_blue, "Blue")
VALIDATE_AND_APPLY(white, set_white, "White")
VALIDATE_AND_APPLY(cold_white, set_cold_white, "Cold white")
VALIDATE_AND_APPLY(warm_white, set_warm_white, "Warm white")
VALIDATE_AND_APPLY(color_temperature, set_color_temperature, "Color temperature", traits.get_min_mireds(),
traits.get_max_mireds())
#undef VALIDATE_AND_APPLY

View File

@@ -95,18 +95,15 @@ class LightColorValues {
*/
void normalize_color() {
if (this->color_mode_ & ColorCapability::RGB) {
float max_value = fmaxf(this->red_, fmaxf(this->green_, this->blue_));
// Assign directly to avoid redundant clamp in set_red/green/blue.
// Values are guaranteed in [0,1]: inputs are already clamped to [0,1],
// and dividing by max_value (the largest) keeps results in [0,1].
float max_value = fmaxf(this->get_red(), fmaxf(this->get_green(), this->get_blue()));
if (max_value == 0.0f) {
this->red_ = 1.0f;
this->green_ = 1.0f;
this->blue_ = 1.0f;
this->set_red(1.0f);
this->set_green(1.0f);
this->set_blue(1.0f);
} else {
this->red_ /= max_value;
this->green_ /= max_value;
this->blue_ /= max_value;
this->set_red(this->get_red() / max_value);
this->set_green(this->get_green() / max_value);
this->set_blue(this->get_blue() / max_value);
}
}
}
@@ -279,8 +276,6 @@ class LightColorValues {
/// Set the warm white property of these light color values. In range 0.0 to 1.0.
void set_warm_white(float warm_white) { this->warm_white_ = clamp(warm_white, 0.0f, 1.0f); }
friend class LightCall;
protected:
float state_; ///< ON / OFF, float for transition
float brightness_;

View File

@@ -154,26 +154,28 @@ LN882X_BOARD_PINS = {
"A7": 21,
},
"wb02a": {
"WIRE0_SCL_0": 1,
"WIRE0_SCL_1": 2,
"WIRE0_SCL_0": 7,
"WIRE0_SCL_1": 5,
"WIRE0_SCL_2": 3,
"WIRE0_SCL_3": 4,
"WIRE0_SCL_4": 5,
"WIRE0_SCL_5": 7,
"WIRE0_SCL_6": 9,
"WIRE0_SCL_7": 10,
"WIRE0_SCL_8": 24,
"WIRE0_SCL_9": 25,
"WIRE0_SDA_0": 1,
"WIRE0_SDA_1": 2,
"WIRE0_SCL_3": 10,
"WIRE0_SCL_4": 2,
"WIRE0_SCL_5": 1,
"WIRE0_SCL_6": 4,
"WIRE0_SCL_7": 5,
"WIRE0_SCL_8": 9,
"WIRE0_SCL_9": 24,
"WIRE0_SCL_10": 25,
"WIRE0_SDA_0": 7,
"WIRE0_SDA_1": 5,
"WIRE0_SDA_2": 3,
"WIRE0_SDA_3": 4,
"WIRE0_SDA_4": 5,
"WIRE0_SDA_5": 7,
"WIRE0_SDA_6": 9,
"WIRE0_SDA_7": 10,
"WIRE0_SDA_8": 24,
"WIRE0_SDA_9": 25,
"WIRE0_SDA_3": 10,
"WIRE0_SDA_4": 2,
"WIRE0_SDA_5": 1,
"WIRE0_SDA_6": 4,
"WIRE0_SDA_7": 5,
"WIRE0_SDA_8": 9,
"WIRE0_SDA_9": 24,
"WIRE0_SDA_10": 25,
"SERIAL0_RX": 3,
"SERIAL0_TX": 2,
"SERIAL1_RX": 24,
@@ -219,32 +221,32 @@ LN882X_BOARD_PINS = {
"A1": 4,
},
"wl2s": {
"WIRE0_SCL_0": 0,
"WIRE0_SCL_1": 1,
"WIRE0_SCL_2": 2,
"WIRE0_SCL_3": 3,
"WIRE0_SCL_4": 5,
"WIRE0_SCL_5": 7,
"WIRE0_SCL_6": 9,
"WIRE0_SCL_7": 10,
"WIRE0_SCL_8": 11,
"WIRE0_SCL_9": 12,
"WIRE0_SCL_10": 19,
"WIRE0_SCL_11": 24,
"WIRE0_SCL_12": 25,
"WIRE0_SDA_0": 0,
"WIRE0_SDA_1": 1,
"WIRE0_SDA_2": 2,
"WIRE0_SDA_3": 3,
"WIRE0_SDA_4": 5,
"WIRE0_SDA_5": 7,
"WIRE0_SDA_6": 9,
"WIRE0_SDA_7": 10,
"WIRE0_SDA_8": 11,
"WIRE0_SDA_9": 12,
"WIRE0_SDA_10": 19,
"WIRE0_SDA_11": 24,
"WIRE0_SDA_12": 25,
"WIRE0_SCL_0": 7,
"WIRE0_SCL_1": 12,
"WIRE0_SCL_2": 3,
"WIRE0_SCL_3": 10,
"WIRE0_SCL_4": 2,
"WIRE0_SCL_5": 0,
"WIRE0_SCL_6": 19,
"WIRE0_SCL_7": 11,
"WIRE0_SCL_8": 9,
"WIRE0_SCL_9": 24,
"WIRE0_SCL_10": 25,
"WIRE0_SCL_11": 5,
"WIRE0_SCL_12": 1,
"WIRE0_SDA_0": 7,
"WIRE0_SDA_1": 12,
"WIRE0_SDA_2": 3,
"WIRE0_SDA_3": 10,
"WIRE0_SDA_4": 2,
"WIRE0_SDA_5": 0,
"WIRE0_SDA_6": 19,
"WIRE0_SDA_7": 11,
"WIRE0_SDA_8": 9,
"WIRE0_SDA_9": 24,
"WIRE0_SDA_10": 25,
"WIRE0_SDA_11": 5,
"WIRE0_SDA_12": 1,
"SERIAL0_RX": 3,
"SERIAL0_TX": 2,
"SERIAL1_RX": 24,
@@ -299,24 +301,24 @@ LN882X_BOARD_PINS = {
"A2": 1,
},
"ln-02": {
"WIRE0_SCL_0": 0,
"WIRE0_SCL_1": 1,
"WIRE0_SCL_2": 2,
"WIRE0_SCL_3": 3,
"WIRE0_SCL_4": 9,
"WIRE0_SCL_5": 11,
"WIRE0_SCL_6": 19,
"WIRE0_SCL_7": 24,
"WIRE0_SCL_8": 25,
"WIRE0_SDA_0": 0,
"WIRE0_SDA_1": 1,
"WIRE0_SDA_2": 2,
"WIRE0_SDA_3": 3,
"WIRE0_SDA_4": 9,
"WIRE0_SDA_5": 11,
"WIRE0_SDA_6": 19,
"WIRE0_SDA_7": 24,
"WIRE0_SDA_8": 25,
"WIRE0_SCL_0": 11,
"WIRE0_SCL_1": 19,
"WIRE0_SCL_2": 3,
"WIRE0_SCL_3": 24,
"WIRE0_SCL_4": 2,
"WIRE0_SCL_5": 25,
"WIRE0_SCL_6": 1,
"WIRE0_SCL_7": 0,
"WIRE0_SCL_8": 9,
"WIRE0_SDA_0": 11,
"WIRE0_SDA_1": 19,
"WIRE0_SDA_2": 3,
"WIRE0_SDA_3": 24,
"WIRE0_SDA_4": 2,
"WIRE0_SDA_5": 25,
"WIRE0_SDA_6": 1,
"WIRE0_SDA_7": 0,
"WIRE0_SDA_8": 9,
"SERIAL0_RX": 3,
"SERIAL0_TX": 2,
"SERIAL1_RX": 24,

View File

@@ -36,9 +36,8 @@ void HOT Logger::log_vprintf_(uint8_t level, const char *tag, int line, const ch
#endif
// Fast path: main thread, no recursion (99.9% of all logs)
// Pass nullptr for thread_name since we already know this is the main task
if (is_main_task && !this->main_task_recursion_guard_) [[likely]] {
this->log_message_to_buffer_and_send_(this->main_task_recursion_guard_, level, tag, line, format, args, nullptr);
this->log_message_to_buffer_and_send_(this->main_task_recursion_guard_, level, tag, line, format, args);
return;
}
@@ -48,23 +47,21 @@ void HOT Logger::log_vprintf_(uint8_t level, const char *tag, int line, const ch
}
// Non-main thread handling (~0.1% of logs)
// Resolve thread name once and pass it through the logging chain.
// ESP32/LibreTiny: use TaskHandle_t overload to avoid redundant xTaskGetCurrentTaskHandle()
// (we already have the handle from the main task check above).
// Host: pass a stack buffer for pthread_getname_np to write into.
#if defined(USE_ESP32) || defined(USE_LIBRETINY)
const char *thread_name = get_thread_name_(current_task);
this->log_vprintf_non_main_thread_(level, tag, line, format, args, current_task);
#else // USE_HOST
char thread_name_buf[THREAD_NAME_BUF_SIZE];
const char *thread_name = this->get_thread_name_(thread_name_buf);
this->log_vprintf_non_main_thread_(level, tag, line, format, args);
#endif
this->log_vprintf_non_main_thread_(level, tag, line, format, args, thread_name);
}
// Handles non-main thread logging only
// Kept separate from hot path to improve instruction cache performance
#if defined(USE_ESP32) || defined(USE_LIBRETINY)
void Logger::log_vprintf_non_main_thread_(uint8_t level, const char *tag, int line, const char *format, va_list args,
const char *thread_name) {
TaskHandle_t current_task) {
#else // USE_HOST
void Logger::log_vprintf_non_main_thread_(uint8_t level, const char *tag, int line, const char *format, va_list args) {
#endif
// Check if already in recursion for this non-main thread/task
if (this->is_non_main_task_recursive_()) {
return;
@@ -76,8 +73,12 @@ void Logger::log_vprintf_non_main_thread_(uint8_t level, const char *tag, int li
bool message_sent = false;
#ifdef USE_ESPHOME_TASK_LOG_BUFFER
// For non-main threads/tasks, queue the message for callbacks
#if defined(USE_ESP32) || defined(USE_LIBRETINY)
message_sent =
this->log_buffer_->send_message_thread_safe(level, tag, static_cast<uint16_t>(line), thread_name, format, args);
this->log_buffer_->send_message_thread_safe(level, tag, static_cast<uint16_t>(line), current_task, format, args);
#else // USE_HOST
message_sent = this->log_buffer_->send_message_thread_safe(level, tag, static_cast<uint16_t>(line), format, args);
#endif
if (message_sent) {
// Enable logger loop to process the buffered message
// This is safe to call from any context including ISRs
@@ -100,27 +101,19 @@ void Logger::log_vprintf_non_main_thread_(uint8_t level, const char *tag, int li
#endif
char console_buffer[MAX_CONSOLE_LOG_MSG_SIZE]; // MUST be stack allocated for thread safety
LogBuffer buf{console_buffer, MAX_CONSOLE_LOG_MSG_SIZE};
this->format_log_to_buffer_with_terminator_(level, tag, line, format, args, buf, thread_name);
this->format_log_to_buffer_with_terminator_(level, tag, line, format, args, buf);
this->write_to_console_(buf);
}
// RAII guard automatically resets on return
}
#else
// Implementation for single-task platforms (ESP8266, RP2040, Zephyr)
// TODO: Zephyr may have multiple threads (work queues, etc.) but uses this single-task path.
// Logging calls are NOT thread-safe: global_recursion_guard_ is a plain bool and tx_buffer_ has no locking.
// Not a problem in practice yet since Zephyr has no API support (logs are console-only).
// Implementation for all other platforms (single-task, no threading)
void HOT Logger::log_vprintf_(uint8_t level, const char *tag, int line, const char *format, va_list args) { // NOLINT
if (level > this->level_for(tag) || global_recursion_guard_)
return;
#ifdef USE_ZEPHYR
char tmp[MAX_POINTER_REPRESENTATION];
this->log_message_to_buffer_and_send_(global_recursion_guard_, level, tag, line, format, args,
this->get_thread_name_(tmp));
#else // Other single-task platforms don't have thread names, so pass nullptr
this->log_message_to_buffer_and_send_(global_recursion_guard_, level, tag, line, format, args, nullptr);
#endif
this->log_message_to_buffer_and_send_(global_recursion_guard_, level, tag, line, format, args);
}
#endif // USE_ESP32 / USE_HOST / USE_LIBRETINY
@@ -136,7 +129,7 @@ void Logger::log_vprintf_(uint8_t level, const char *tag, int line, const __Flas
if (level > this->level_for(tag) || global_recursion_guard_)
return;
this->log_message_to_buffer_and_send_(global_recursion_guard_, level, tag, line, format, args, nullptr);
this->log_message_to_buffer_and_send_(global_recursion_guard_, level, tag, line, format, args);
}
#endif // USE_STORE_LOG_STR_IN_FLASH

View File

@@ -2,7 +2,6 @@
#include <cstdarg>
#include <map>
#include <span>
#include <type_traits>
#if defined(USE_ESP32) || defined(USE_HOST)
#include <pthread.h>
@@ -125,10 +124,6 @@ static constexpr uint16_t MAX_HEADER_SIZE = 128;
// "0x" + 2 hex digits per byte + '\0'
static constexpr size_t MAX_POINTER_REPRESENTATION = 2 + sizeof(void *) * 2 + 1;
// Stack buffer size for retrieving thread/task names from the OS
// macOS allows up to 64 bytes, Linux up to 16
static constexpr size_t THREAD_NAME_BUF_SIZE = 64;
// Buffer wrapper for log formatting functions
struct LogBuffer {
char *data;
@@ -413,24 +408,34 @@ class Logger : public Component {
#if defined(USE_ESP32) || defined(USE_HOST) || defined(USE_LIBRETINY)
// Handles non-main thread logging only (~0.1% of calls)
// thread_name is resolved by the caller from the task handle, avoiding redundant lookups
#if defined(USE_ESP32) || defined(USE_LIBRETINY)
// ESP32/LibreTiny: Pass task handle to avoid calling xTaskGetCurrentTaskHandle() twice
void log_vprintf_non_main_thread_(uint8_t level, const char *tag, int line, const char *format, va_list args,
const char *thread_name);
TaskHandle_t current_task);
#else // USE_HOST
// Host: No task handle parameter needed (not used in send_message_thread_safe)
void log_vprintf_non_main_thread_(uint8_t level, const char *tag, int line, const char *format, va_list args);
#endif
#endif
void process_messages_();
void write_msg_(const char *msg, uint16_t len);
// Format a log message with printf-style arguments and write it to a buffer with header, footer, and null terminator
// thread_name: name of the calling thread/task, or nullptr for main task (callers already know which task they're on)
inline void HOT format_log_to_buffer_with_terminator_(uint8_t level, const char *tag, int line, const char *format,
va_list args, LogBuffer &buf, const char *thread_name) {
buf.write_header(level, tag, line, thread_name);
va_list args, LogBuffer &buf) {
#if defined(USE_ESP32) || defined(USE_LIBRETINY) || defined(USE_HOST)
buf.write_header(level, tag, line, this->get_thread_name_());
#elif defined(USE_ZEPHYR)
char tmp[MAX_POINTER_REPRESENTATION];
buf.write_header(level, tag, line, this->get_thread_name_(tmp));
#else
buf.write_header(level, tag, line, nullptr);
#endif
buf.format_body(format, args);
}
#ifdef USE_STORE_LOG_STR_IN_FLASH
// Format a log message with flash string format and write it to a buffer with header, footer, and null terminator
// ESP8266-only (single-task), thread_name is always nullptr
inline void HOT format_log_to_buffer_with_terminator_P_(uint8_t level, const char *tag, int line,
const __FlashStringHelper *format, va_list args,
LogBuffer &buf) {
@@ -461,10 +466,9 @@ class Logger : public Component {
// Helper to format and send a log message to both console and listeners
// Template handles both const char* (RAM) and __FlashStringHelper* (flash) format strings
// thread_name: name of the calling thread/task, or nullptr for main task
template<typename FormatType>
inline void HOT log_message_to_buffer_and_send_(bool &recursion_guard, uint8_t level, const char *tag, int line,
FormatType format, va_list args, const char *thread_name) {
FormatType format, va_list args) {
RecursionGuard guard(recursion_guard);
LogBuffer buf{this->tx_buffer_, this->tx_buffer_size_};
#ifdef USE_STORE_LOG_STR_IN_FLASH
@@ -473,7 +477,7 @@ class Logger : public Component {
} else
#endif
{
this->format_log_to_buffer_with_terminator_(level, tag, line, format, args, buf, thread_name);
this->format_log_to_buffer_with_terminator_(level, tag, line, format, args, buf);
}
this->notify_listeners_(level, tag, buf);
this->write_log_buffer_to_console_(buf);
@@ -561,57 +565,37 @@ class Logger : public Component {
bool global_recursion_guard_{false}; // Simple global recursion guard for single-task platforms
#endif
// --- get_thread_name_ overloads (per-platform) ---
#if defined(USE_ESP32) || defined(USE_LIBRETINY)
// Primary overload - takes a task handle directly to avoid redundant xTaskGetCurrentTaskHandle() calls
// when the caller already has the handle (e.g. from the main task check in log_vprintf_)
const char *get_thread_name_(TaskHandle_t task) {
if (task == this->main_task_) {
return nullptr; // Main task
}
#if defined(USE_ESP32)
return pcTaskGetName(task);
#elif defined(USE_LIBRETINY)
return pcTaskGetTaskName(task);
#if defined(USE_ESP32) || defined(USE_LIBRETINY) || defined(USE_ZEPHYR)
const char *HOT get_thread_name_(
#ifdef USE_ZEPHYR
char *buff
#endif
}
// Convenience overload - gets the current task handle and delegates
const char *HOT get_thread_name_() { return this->get_thread_name_(xTaskGetCurrentTaskHandle()); }
#elif defined(USE_HOST)
// Takes a caller-provided buffer for the thread name (stack-allocated for thread safety)
const char *HOT get_thread_name_(std::span<char> buff) {
pthread_t current_thread = pthread_self();
if (pthread_equal(current_thread, main_thread_)) {
return nullptr; // Main thread
}
// For non-main threads, get the thread name into the caller-provided buffer
if (pthread_getname_np(current_thread, buff.data(), buff.size()) == 0) {
return buff.data();
}
return nullptr;
}
#elif defined(USE_ZEPHYR)
const char *HOT get_thread_name_(std::span<char> buff) {
) {
#ifdef USE_ZEPHYR
k_tid_t current_task = k_current_get();
#else
TaskHandle_t current_task = xTaskGetCurrentTaskHandle();
#endif
if (current_task == main_task_) {
return nullptr; // Main task
} else {
#if defined(USE_ESP32)
return pcTaskGetName(current_task);
#elif defined(USE_LIBRETINY)
return pcTaskGetTaskName(current_task);
#elif defined(USE_ZEPHYR)
const char *name = k_thread_name_get(current_task);
if (name) {
// zephyr print task names only if debug component is present
return name;
}
std::snprintf(buff, MAX_POINTER_REPRESENTATION, "%p", current_task);
return buff;
#endif
}
const char *name = k_thread_name_get(current_task);
if (name) {
// zephyr print task names only if debug component is present
return name;
}
std::snprintf(buff.data(), buff.size(), "%p", current_task);
return buff.data();
}
#endif
// --- Non-main task recursion guards (per-platform) ---
#if defined(USE_ESP32) || defined(USE_HOST)
// RAII guard for non-main task recursion using pthread TLS
class NonMainTaskRecursionGuard {
@@ -651,6 +635,22 @@ class Logger : public Component {
inline RecursionGuard make_non_main_task_guard_() { return RecursionGuard(non_main_task_recursion_guard_); }
#endif
#ifdef USE_HOST
const char *HOT get_thread_name_() {
pthread_t current_thread = pthread_self();
if (pthread_equal(current_thread, main_thread_)) {
return nullptr; // Main thread
}
// For non-main threads, return the thread name
// We store it in thread-local storage to avoid allocation
static thread_local char thread_name_buf[32];
if (pthread_getname_np(current_thread, thread_name_buf, sizeof(thread_name_buf)) == 0) {
return thread_name_buf;
}
return nullptr;
}
#endif
#if defined(USE_ESP32) || defined(USE_LIBRETINY)
// Disable loop when task buffer is empty (with USB CDC check on ESP32)
inline void disable_loop_when_buffer_empty_() {

View File

@@ -1,51 +0,0 @@
#ifdef USE_ESP8266
#include "logger.h"
#include "esphome/core/log.h"
namespace esphome::logger {
static const char *const TAG = "logger";
void Logger::pre_setup() {
if (this->baud_rate_ > 0) {
switch (this->uart_) {
case UART_SELECTION_UART0:
case UART_SELECTION_UART0_SWAP:
this->hw_serial_ = &Serial;
Serial.begin(this->baud_rate_);
if (this->uart_ == UART_SELECTION_UART0_SWAP) {
Serial.swap();
}
Serial.setDebugOutput(ESPHOME_LOG_LEVEL >= ESPHOME_LOG_LEVEL_VERBOSE);
break;
case UART_SELECTION_UART1:
this->hw_serial_ = &Serial1;
Serial1.begin(this->baud_rate_);
Serial1.setDebugOutput(ESPHOME_LOG_LEVEL >= ESPHOME_LOG_LEVEL_VERBOSE);
break;
}
} else {
uart_set_debug(UART_NO);
}
global_logger = this;
ESP_LOGI(TAG, "Log initialized");
}
void HOT Logger::write_msg_(const char *msg) { this->hw_serial_->println(msg); }
const LogString *Logger::get_uart_selection_() {
switch (this->uart_) {
case UART_SELECTION_UART0:
return LOG_STR("UART0");
case UART_SELECTION_UART1:
return LOG_STR("UART1");
case UART_SELECTION_UART0_SWAP:
default:
return LOG_STR("UART0_SWAP");
}
}
} // namespace esphome::logger
#endif

View File

@@ -1,22 +0,0 @@
#if defined(USE_HOST)
#include "logger.h"
namespace esphome::logger {
void HOT Logger::write_msg_(const char *msg) {
time_t rawtime;
struct tm *timeinfo;
char buffer[80];
time(&rawtime);
timeinfo = localtime(&rawtime);
strftime(buffer, sizeof buffer, "[%H:%M:%S]", timeinfo);
fputs(buffer, stdout);
puts(msg);
}
void Logger::pre_setup() { global_logger = this; }
} // namespace esphome::logger
#endif

View File

@@ -1,70 +0,0 @@
#ifdef USE_LIBRETINY
#include "logger.h"
namespace esphome::logger {
static const char *const TAG = "logger";
void Logger::pre_setup() {
if (this->baud_rate_ > 0) {
switch (this->uart_) {
#if LT_HW_UART0
case UART_SELECTION_UART0:
this->hw_serial_ = &Serial0;
Serial0.begin(this->baud_rate_);
break;
#endif
#if LT_HW_UART1
case UART_SELECTION_UART1:
this->hw_serial_ = &Serial1;
Serial1.begin(this->baud_rate_);
break;
#endif
#if LT_HW_UART2
case UART_SELECTION_UART2:
this->hw_serial_ = &Serial2;
Serial2.begin(this->baud_rate_);
break;
#endif
default:
this->hw_serial_ = &Serial;
Serial.begin(this->baud_rate_);
if (this->uart_ != UART_SELECTION_DEFAULT) {
ESP_LOGW(TAG, " The chosen logger UART port is not available on this board."
"The default port was used instead.");
}
break;
}
// change lt_log() port to match default Serial
if (this->uart_ == UART_SELECTION_DEFAULT) {
this->uart_ = (UARTSelection) (LT_UART_DEFAULT_SERIAL + 1);
lt_log_set_port(LT_UART_DEFAULT_SERIAL);
} else {
lt_log_set_port(this->uart_ - 1);
}
}
global_logger = this;
ESP_LOGI(TAG, "Log initialized");
}
void HOT Logger::write_msg_(const char *msg) { this->hw_serial_->println(msg); }
const LogString *Logger::get_uart_selection_() {
switch (this->uart_) {
case UART_SELECTION_DEFAULT:
return LOG_STR("DEFAULT");
case UART_SELECTION_UART0:
return LOG_STR("UART0");
case UART_SELECTION_UART1:
return LOG_STR("UART1");
case UART_SELECTION_UART2:
default:
return LOG_STR("UART2");
}
}
} // namespace esphome::logger
#endif // USE_LIBRETINY

View File

@@ -1,48 +0,0 @@
#ifdef USE_RP2040
#include "logger.h"
#include "esphome/core/log.h"
namespace esphome::logger {
static const char *const TAG = "logger";
void Logger::pre_setup() {
if (this->baud_rate_ > 0) {
switch (this->uart_) {
case UART_SELECTION_UART0:
this->hw_serial_ = &Serial1;
Serial1.begin(this->baud_rate_);
break;
case UART_SELECTION_UART1:
this->hw_serial_ = &Serial2;
Serial2.begin(this->baud_rate_);
break;
case UART_SELECTION_USB_CDC:
this->hw_serial_ = &Serial;
Serial.begin(this->baud_rate_);
break;
}
}
global_logger = this;
ESP_LOGI(TAG, "Log initialized");
}
void HOT Logger::write_msg_(const char *msg) { this->hw_serial_->println(msg); }
const LogString *Logger::get_uart_selection_() {
switch (this->uart_) {
case UART_SELECTION_UART0:
return LOG_STR("UART0");
case UART_SELECTION_UART1:
return LOG_STR("UART1");
#ifdef USE_LOGGER_USB_CDC
case UART_SELECTION_USB_CDC:
return LOG_STR("USB_CDC");
#endif
default:
return LOG_STR("UNKNOWN");
}
}
} // namespace esphome::logger
#endif // USE_RP2040

View File

@@ -1,96 +0,0 @@
#ifdef USE_ZEPHYR
#include "esphome/core/application.h"
#include "esphome/core/log.h"
#include "logger.h"
#include <zephyr/device.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/usb/usb_device.h>
namespace esphome::logger {
static const char *const TAG = "logger";
#ifdef USE_LOGGER_USB_CDC
void Logger::loop() {
if (this->uart_ != UART_SELECTION_USB_CDC || nullptr == this->uart_dev_) {
return;
}
static bool opened = false;
uint32_t dtr = 0;
uart_line_ctrl_get(this->uart_dev_, UART_LINE_CTRL_DTR, &dtr);
/* Poll if the DTR flag was set, optional */
if (opened == dtr) {
return;
}
if (!opened) {
App.schedule_dump_config();
}
opened = !opened;
}
#endif
void Logger::pre_setup() {
if (this->baud_rate_ > 0) {
static const struct device *uart_dev = nullptr;
switch (this->uart_) {
case UART_SELECTION_UART0:
uart_dev = DEVICE_DT_GET_OR_NULL(DT_NODELABEL(uart0));
break;
case UART_SELECTION_UART1:
uart_dev = DEVICE_DT_GET_OR_NULL(DT_NODELABEL(uart1));
break;
#ifdef USE_LOGGER_USB_CDC
case UART_SELECTION_USB_CDC:
uart_dev = DEVICE_DT_GET_OR_NULL(DT_NODELABEL(cdc_acm_uart0));
if (device_is_ready(uart_dev)) {
usb_enable(nullptr);
}
break;
#endif
}
if (!device_is_ready(uart_dev)) {
ESP_LOGE(TAG, "%s is not ready.", LOG_STR_ARG(get_uart_selection_()));
} else {
this->uart_dev_ = uart_dev;
}
}
global_logger = this;
ESP_LOGI(TAG, "Log initialized");
}
void HOT Logger::write_msg_(const char *msg) {
#ifdef CONFIG_PRINTK
printk("%s\n", msg);
#endif
if (nullptr == this->uart_dev_) {
return;
}
while (*msg) {
uart_poll_out(this->uart_dev_, *msg);
++msg;
}
uart_poll_out(this->uart_dev_, '\n');
}
const LogString *Logger::get_uart_selection_() {
switch (this->uart_) {
case UART_SELECTION_UART0:
return LOG_STR("UART0");
case UART_SELECTION_UART1:
return LOG_STR("UART1");
#ifdef USE_LOGGER_USB_CDC
case UART_SELECTION_USB_CDC:
return LOG_STR("USB_CDC");
#endif
default:
return LOG_STR("UNKNOWN");
}
}
} // namespace esphome::logger
#endif

View File

@@ -59,7 +59,7 @@ void TaskLogBuffer::release_message_main_loop(void *token) {
last_processed_counter_ = message_counter_.load(std::memory_order_relaxed);
}
bool TaskLogBuffer::send_message_thread_safe(uint8_t level, const char *tag, uint16_t line, const char *thread_name,
bool TaskLogBuffer::send_message_thread_safe(uint8_t level, const char *tag, uint16_t line, TaskHandle_t task_handle,
const char *format, va_list args) {
// First, calculate the exact length needed using a null buffer (no actual writing)
va_list args_copy;
@@ -95,6 +95,7 @@ bool TaskLogBuffer::send_message_thread_safe(uint8_t level, const char *tag, uin
// Store the thread name now instead of waiting until main loop processing
// This avoids crashes if the task completes or is deleted between when this message
// is enqueued and when it's processed by the main loop
const char *thread_name = pcTaskGetName(task_handle);
if (thread_name != nullptr) {
strncpy(msg->thread_name, thread_name, sizeof(msg->thread_name) - 1);
msg->thread_name[sizeof(msg->thread_name) - 1] = '\0'; // Ensure null termination

View File

@@ -58,7 +58,7 @@ class TaskLogBuffer {
void release_message_main_loop(void *token);
// Thread-safe - send a message to the ring buffer from any thread
bool send_message_thread_safe(uint8_t level, const char *tag, uint16_t line, const char *thread_name,
bool send_message_thread_safe(uint8_t level, const char *tag, uint16_t line, TaskHandle_t task_handle,
const char *format, va_list args);
// Check if there are messages ready to be processed using an atomic counter for performance

View File

@@ -70,8 +70,8 @@ void TaskLogBufferHost::commit_write_slot_(int slot_index) {
}
}
bool TaskLogBufferHost::send_message_thread_safe(uint8_t level, const char *tag, uint16_t line, const char *thread_name,
const char *format, va_list args) {
bool TaskLogBufferHost::send_message_thread_safe(uint8_t level, const char *tag, uint16_t line, const char *format,
va_list args) {
// Acquire a slot
int slot_index = this->acquire_write_slot_();
if (slot_index < 0) {
@@ -85,9 +85,11 @@ bool TaskLogBufferHost::send_message_thread_safe(uint8_t level, const char *tag,
msg.tag = tag;
msg.line = line;
// Store the thread name now to avoid crashes if thread exits before processing
if (thread_name != nullptr) {
strncpy(msg.thread_name, thread_name, sizeof(msg.thread_name) - 1);
// Get thread name using pthread
char thread_name_buf[LogMessage::MAX_THREAD_NAME_SIZE];
// pthread_getname_np works the same on Linux and macOS
if (pthread_getname_np(pthread_self(), thread_name_buf, sizeof(thread_name_buf)) == 0) {
strncpy(msg.thread_name, thread_name_buf, sizeof(msg.thread_name) - 1);
msg.thread_name[sizeof(msg.thread_name) - 1] = '\0';
} else {
msg.thread_name[0] = '\0';

View File

@@ -86,8 +86,7 @@ class TaskLogBufferHost {
// Thread-safe - send a message to the buffer from any thread
// Returns true if message was queued, false if buffer is full
bool send_message_thread_safe(uint8_t level, const char *tag, uint16_t line, const char *thread_name,
const char *format, va_list args);
bool send_message_thread_safe(uint8_t level, const char *tag, uint16_t line, const char *format, va_list args);
// Check if there are messages ready to be processed
inline bool HOT has_messages() const {

View File

@@ -101,7 +101,7 @@ void TaskLogBufferLibreTiny::release_message_main_loop() {
}
bool TaskLogBufferLibreTiny::send_message_thread_safe(uint8_t level, const char *tag, uint16_t line,
const char *thread_name, const char *format, va_list args) {
TaskHandle_t task_handle, const char *format, va_list args) {
// First, calculate the exact length needed using a null buffer (no actual writing)
va_list args_copy;
va_copy(args_copy, args);
@@ -162,6 +162,7 @@ bool TaskLogBufferLibreTiny::send_message_thread_safe(uint8_t level, const char
msg->line = line;
// Store the thread name now to avoid crashes if task is deleted before processing
const char *thread_name = pcTaskGetTaskName(task_handle);
if (thread_name != nullptr) {
strncpy(msg->thread_name, thread_name, sizeof(msg->thread_name) - 1);
msg->thread_name[sizeof(msg->thread_name) - 1] = '\0';

View File

@@ -70,7 +70,7 @@ class TaskLogBufferLibreTiny {
void release_message_main_loop();
// Thread-safe - send a message to the buffer from any thread
bool send_message_thread_safe(uint8_t level, const char *tag, uint16_t line, const char *thread_name,
bool send_message_thread_safe(uint8_t level, const char *tag, uint16_t line, TaskHandle_t task_handle,
const char *format, va_list args);
// Fast check using volatile counter - no lock needed

View File

@@ -56,7 +56,7 @@ void MCP23016::pin_mode(uint8_t pin, gpio::Flags flags) {
this->update_reg_(pin, false, iodir);
}
}
float MCP23016::get_setup_priority() const { return setup_priority::IO; }
float MCP23016::get_setup_priority() const { return setup_priority::HARDWARE; }
bool MCP23016::read_reg_(uint8_t reg, uint8_t *value) {
if (this->is_failed())
return false;

View File

@@ -45,28 +45,9 @@ class MDNSComponent : public Component {
void setup() override;
void dump_config() override;
// Polling interval for MDNS.update() on platforms that require it (ESP8266, RP2040).
//
// On these platforms, MDNS.update() calls _process(true) which only manages timer-driven
// state machines (probe/announce timeouts and service query cache TTLs). Incoming mDNS
// packets are handled independently via the lwIP onRx UDP callback and are NOT affected
// by how often update() is called.
//
// The shortest internal timer is the 250ms probe interval (RFC 6762 Section 8.1).
// Announcement intervals are 1000ms and cache TTL checks are on the order of seconds
// to minutes. A 50ms polling interval provides sufficient resolution for all timers
// while completely removing mDNS from the per-iteration loop list.
//
// In steady state (after the ~8 second boot probe/announce phase completes), update()
// checks timers that are set to never expire, making every call pure overhead.
//
// Tasmota uses a 50ms main loop cycle with mDNS working correctly, confirming this
// interval is safe in production.
//
// By using set_interval() instead of overriding loop(), the component is excluded from
// the main loop list via has_overridden_loop(), eliminating all per-iteration overhead
// including virtual dispatch.
static constexpr uint32_t MDNS_UPDATE_INTERVAL_MS = 50;
#if (defined(USE_ESP8266) || defined(USE_RP2040)) && defined(USE_ARDUINO)
void loop() override;
#endif
float get_setup_priority() const override { return setup_priority::AFTER_CONNECTION; }
#ifdef USE_MDNS_EXTRA_SERVICES

View File

@@ -36,14 +36,9 @@ static void register_esp8266(MDNSComponent *, StaticVector<MDNSService, MDNS_SER
}
}
void MDNSComponent::setup() {
this->setup_buffers_and_register_(register_esp8266);
// Schedule MDNS.update() via set_interval() instead of overriding loop().
// This removes the component from the per-iteration loop list entirely,
// eliminating virtual dispatch overhead on every main loop cycle.
// See MDNS_UPDATE_INTERVAL_MS comment in mdns_component.h for safety analysis.
this->set_interval(MDNS_UPDATE_INTERVAL_MS, []() { MDNS.update(); });
}
void MDNSComponent::setup() { this->setup_buffers_and_register_(register_esp8266); }
void MDNSComponent::loop() { MDNS.update(); }
void MDNSComponent::on_shutdown() {
MDNS.close();

View File

@@ -35,14 +35,9 @@ static void register_rp2040(MDNSComponent *, StaticVector<MDNSService, MDNS_SERV
}
}
void MDNSComponent::setup() {
this->setup_buffers_and_register_(register_rp2040);
// Schedule MDNS.update() via set_interval() instead of overriding loop().
// This removes the component from the per-iteration loop list entirely,
// eliminating virtual dispatch overhead on every main loop cycle.
// See MDNS_UPDATE_INTERVAL_MS comment in mdns_component.h for safety analysis.
this->set_interval(MDNS_UPDATE_INTERVAL_MS, []() { MDNS.update(); });
}
void MDNSComponent::setup() { this->setup_buffers_and_register_(register_rp2040); }
void MDNSComponent::loop() { MDNS.update(); }
void MDNSComponent::on_shutdown() {
MDNS.close();

View File

@@ -20,10 +20,10 @@ void Modbus::loop() {
const uint32_t now = App.get_loop_component_start_time();
// Read all available bytes in batches to reduce UART call overhead.
size_t avail = this->available();
int avail = this->available();
uint8_t buf[64];
while (avail > 0) {
size_t to_read = std::min(avail, sizeof(buf));
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
if (!this->read_array(buf, to_read)) {
break;
}

View File

@@ -170,8 +170,10 @@ void MQTTClientComponent::send_device_info_() {
void MQTTClientComponent::on_log(uint8_t level, const char *tag, const char *message, size_t message_len) {
(void) tag;
if (level <= this->log_level_ && this->is_connected()) {
this->publish(this->log_message_.topic.c_str(), message, message_len, this->log_message_.qos,
this->log_message_.retain);
this->publish({.topic = this->log_message_.topic,
.payload = std::string(message, message_len),
.qos = this->log_message_.qos,
.retain = this->log_message_.retain});
}
}
#endif
@@ -540,8 +542,8 @@ bool MQTTClientComponent::publish(const char *topic, const char *payload, size_t
}
bool MQTTClientComponent::publish_json(const char *topic, const json::json_build_t &f, uint8_t qos, bool retain) {
auto message = json::build_json(f);
return this->publish(topic, message.c_str(), message.size(), qos, retain);
std::string message = json::build_json(f);
return this->publish(topic, message.c_str(), message.length(), qos, retain);
}
void MQTTClientComponent::enable() {

View File

@@ -300,11 +300,9 @@ const EntityBase *MQTTClimateComponent::get_entity() const { return this->device
bool MQTTClimateComponent::publish_state_() {
auto traits = this->device_->get_traits();
// Reusable stack buffer for topic construction (avoids heap allocation per publish)
char topic_buf[MQTT_DEFAULT_TOPIC_MAX_LEN];
// mode
bool success = true;
if (!this->publish(this->get_mode_state_topic_to(topic_buf), climate_mode_to_mqtt_str(this->device_->mode)))
if (!this->publish(this->get_mode_state_topic(), climate_mode_to_mqtt_str(this->device_->mode)))
success = false;
int8_t target_accuracy = traits.get_target_temperature_accuracy_decimals();
int8_t current_accuracy = traits.get_current_temperature_accuracy_decimals();
@@ -313,70 +311,68 @@ bool MQTTClimateComponent::publish_state_() {
if (traits.has_feature_flags(climate::CLIMATE_SUPPORTS_CURRENT_TEMPERATURE) &&
!std::isnan(this->device_->current_temperature)) {
len = value_accuracy_to_buf(payload, this->device_->current_temperature, current_accuracy);
if (!this->publish(this->get_current_temperature_state_topic_to(topic_buf), payload, len))
if (!this->publish(this->get_current_temperature_state_topic(), payload, len))
success = false;
}
if (traits.has_feature_flags(climate::CLIMATE_SUPPORTS_TWO_POINT_TARGET_TEMPERATURE |
climate::CLIMATE_REQUIRES_TWO_POINT_TARGET_TEMPERATURE)) {
len = value_accuracy_to_buf(payload, this->device_->target_temperature_low, target_accuracy);
if (!this->publish(this->get_target_temperature_low_state_topic_to(topic_buf), payload, len))
if (!this->publish(this->get_target_temperature_low_state_topic(), payload, len))
success = false;
len = value_accuracy_to_buf(payload, this->device_->target_temperature_high, target_accuracy);
if (!this->publish(this->get_target_temperature_high_state_topic_to(topic_buf), payload, len))
if (!this->publish(this->get_target_temperature_high_state_topic(), payload, len))
success = false;
} else {
len = value_accuracy_to_buf(payload, this->device_->target_temperature, target_accuracy);
if (!this->publish(this->get_target_temperature_state_topic_to(topic_buf), payload, len))
if (!this->publish(this->get_target_temperature_state_topic(), payload, len))
success = false;
}
if (traits.has_feature_flags(climate::CLIMATE_SUPPORTS_CURRENT_HUMIDITY) &&
!std::isnan(this->device_->current_humidity)) {
len = value_accuracy_to_buf(payload, this->device_->current_humidity, 0);
if (!this->publish(this->get_current_humidity_state_topic_to(topic_buf), payload, len))
if (!this->publish(this->get_current_humidity_state_topic(), payload, len))
success = false;
}
if (traits.has_feature_flags(climate::CLIMATE_SUPPORTS_TARGET_HUMIDITY) &&
!std::isnan(this->device_->target_humidity)) {
len = value_accuracy_to_buf(payload, this->device_->target_humidity, 0);
if (!this->publish(this->get_target_humidity_state_topic_to(topic_buf), payload, len))
if (!this->publish(this->get_target_humidity_state_topic(), payload, len))
success = false;
}
if (traits.get_supports_presets() || !traits.get_supported_custom_presets().empty()) {
if (this->device_->has_custom_preset()) {
if (!this->publish(this->get_preset_state_topic_to(topic_buf), this->device_->get_custom_preset().c_str()))
if (!this->publish(this->get_preset_state_topic(), this->device_->get_custom_preset()))
success = false;
} else if (this->device_->preset.has_value()) {
if (!this->publish(this->get_preset_state_topic_to(topic_buf),
climate_preset_to_mqtt_str(this->device_->preset.value())))
if (!this->publish(this->get_preset_state_topic(), climate_preset_to_mqtt_str(this->device_->preset.value())))
success = false;
} else if (!this->publish(this->get_preset_state_topic_to(topic_buf), "")) {
} else if (!this->publish(this->get_preset_state_topic(), "")) {
success = false;
}
}
if (traits.has_feature_flags(climate::CLIMATE_SUPPORTS_ACTION)) {
if (!this->publish(this->get_action_state_topic_to(topic_buf), climate_action_to_mqtt_str(this->device_->action)))
if (!this->publish(this->get_action_state_topic(), climate_action_to_mqtt_str(this->device_->action)))
success = false;
}
if (traits.get_supports_fan_modes()) {
if (this->device_->has_custom_fan_mode()) {
if (!this->publish(this->get_fan_mode_state_topic_to(topic_buf), this->device_->get_custom_fan_mode().c_str()))
if (!this->publish(this->get_fan_mode_state_topic(), this->device_->get_custom_fan_mode()))
success = false;
} else if (this->device_->fan_mode.has_value()) {
if (!this->publish(this->get_fan_mode_state_topic_to(topic_buf),
if (!this->publish(this->get_fan_mode_state_topic(),
climate_fan_mode_to_mqtt_str(this->device_->fan_mode.value())))
success = false;
} else if (!this->publish(this->get_fan_mode_state_topic_to(topic_buf), "")) {
} else if (!this->publish(this->get_fan_mode_state_topic(), "")) {
success = false;
}
}
if (traits.get_supports_swing_modes()) {
if (!this->publish(this->get_swing_mode_state_topic_to(topic_buf),
climate_swing_mode_to_mqtt_str(this->device_->swing_mode)))
if (!this->publish(this->get_swing_mode_state_topic(), climate_swing_mode_to_mqtt_str(this->device_->swing_mode)))
success = false;
}

View File

@@ -59,11 +59,6 @@ void log_mqtt_component(const char *tag, MQTTComponent *obj, bool state_topic, b
\
public: \
void set_custom_##name##_##type##_topic(const std::string &topic) { this->custom_##name##_##type##_topic_ = topic; } \
StringRef get_##name##_##type##_topic_to(std::span<char, MQTT_DEFAULT_TOPIC_MAX_LEN> buf) const { \
if (!this->custom_##name##_##type##_topic_.empty()) \
return StringRef(this->custom_##name##_##type##_topic_.data(), this->custom_##name##_##type##_topic_.size()); \
return this->get_default_topic_for_to_(buf, #name "/" #type, sizeof(#name "/" #type) - 1); \
} \
std::string get_##name##_##type##_topic() const { \
if (this->custom_##name##_##type##_topic_.empty()) \
return this->get_default_topic_for_(#name "/" #type); \

View File

@@ -112,19 +112,19 @@ bool MQTTCoverComponent::send_initial_state() { return this->publish_state(); }
bool MQTTCoverComponent::publish_state() {
auto traits = this->cover_->get_traits();
bool success = true;
char topic_buf[MQTT_DEFAULT_TOPIC_MAX_LEN];
if (traits.get_supports_position()) {
char pos[VALUE_ACCURACY_MAX_LEN];
size_t len = value_accuracy_to_buf(pos, roundf(this->cover_->position * 100), 0);
if (!this->publish(this->get_position_state_topic_to(topic_buf), pos, len))
if (!this->publish(this->get_position_state_topic(), pos, len))
success = false;
}
if (traits.get_supports_tilt()) {
char pos[VALUE_ACCURACY_MAX_LEN];
size_t len = value_accuracy_to_buf(pos, roundf(this->cover_->tilt * 100), 0);
if (!this->publish(this->get_tilt_state_topic_to(topic_buf), pos, len))
if (!this->publish(this->get_tilt_state_topic(), pos, len))
success = false;
}
char topic_buf[MQTT_DEFAULT_TOPIC_MAX_LEN];
if (!this->publish(this->get_state_topic_to_(topic_buf),
cover_state_to_mqtt_str(this->cover_->current_operation, this->cover_->position,
traits.get_supports_position())))

View File

@@ -173,20 +173,19 @@ bool MQTTFanComponent::publish_state() {
this->publish(this->get_state_topic_to_(topic_buf), state_s);
bool failed = false;
if (this->state_->get_traits().supports_direction()) {
bool success = this->publish(this->get_direction_state_topic_to(topic_buf),
fan_direction_to_mqtt_str(this->state_->direction));
bool success = this->publish(this->get_direction_state_topic(), fan_direction_to_mqtt_str(this->state_->direction));
failed = failed || !success;
}
if (this->state_->get_traits().supports_oscillation()) {
bool success = this->publish(this->get_oscillation_state_topic_to(topic_buf),
fan_oscillation_to_mqtt_str(this->state_->oscillating));
bool success =
this->publish(this->get_oscillation_state_topic(), fan_oscillation_to_mqtt_str(this->state_->oscillating));
failed = failed || !success;
}
auto traits = this->state_->get_traits();
if (traits.supports_speed()) {
char buf[12];
size_t len = buf_append_printf(buf, sizeof(buf), 0, "%d", this->state_->speed);
bool success = this->publish(this->get_speed_level_state_topic_to(topic_buf), buf, len);
bool success = this->publish(this->get_speed_level_state_topic(), buf, len);
failed = failed || !success;
}
return !failed;

View File

@@ -87,13 +87,13 @@ bool MQTTValveComponent::send_initial_state() { return this->publish_state(); }
bool MQTTValveComponent::publish_state() {
auto traits = this->valve_->get_traits();
bool success = true;
char topic_buf[MQTT_DEFAULT_TOPIC_MAX_LEN];
if (traits.get_supports_position()) {
char pos[VALUE_ACCURACY_MAX_LEN];
size_t len = value_accuracy_to_buf(pos, roundf(this->valve_->position * 100), 0);
if (!this->publish(this->get_position_state_topic_to(topic_buf), pos, len))
if (!this->publish(this->get_position_state_topic(), pos, len))
success = false;
}
char topic_buf[MQTT_DEFAULT_TOPIC_MAX_LEN];
if (!this->publish(this->get_state_topic_to_(topic_buf),
valve_state_to_mqtt_str(this->valve_->current_operation, this->valve_->position,
traits.get_supports_position())))

View File

@@ -398,10 +398,10 @@ bool Nextion::remove_from_q_(bool report_empty) {
void Nextion::process_serial_() {
// Read all available bytes in batches to reduce UART call overhead.
size_t avail = this->available();
int avail = this->available();
uint8_t buf[64];
while (avail > 0) {
size_t to_read = std::min(avail, sizeof(buf));
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
if (!this->read_array(buf, to_read)) {
break;
}

View File

@@ -14,9 +14,9 @@ void Pipsolar::setup() {
void Pipsolar::empty_uart_buffer_() {
uint8_t buf[64];
size_t avail;
int avail;
while ((avail = this->available()) > 0) {
if (!this->read_array(buf, std::min(avail, sizeof(buf)))) {
if (!this->read_array(buf, std::min(static_cast<size_t>(avail), sizeof(buf)))) {
break;
}
}
@@ -97,10 +97,10 @@ void Pipsolar::loop() {
}
if (this->state_ == STATE_COMMAND || this->state_ == STATE_POLL) {
size_t avail = this->available();
int avail = this->available();
while (avail > 0) {
uint8_t buf[64];
size_t to_read = std::min(avail, sizeof(buf));
size_t to_read = std::min(static_cast<size_t>(avail), sizeof(buf));
if (!this->read_array(buf, to_read)) {
break;
}

View File

@@ -1,11 +1,6 @@
#include "pulse_counter_sensor.h"
#include "esphome/core/log.h"
#ifdef HAS_PCNT
#include <esp_clk_tree.h>
#include <hal/pcnt_ll.h>
#endif
namespace esphome {
namespace pulse_counter {
@@ -61,109 +56,103 @@ pulse_counter_t BasicPulseCounterStorage::read_raw_value() {
#ifdef HAS_PCNT
bool HwPulseCounterStorage::pulse_counter_setup(InternalGPIOPin *pin) {
static pcnt_unit_t next_pcnt_unit = PCNT_UNIT_0;
static pcnt_channel_t next_pcnt_channel = PCNT_CHANNEL_0;
this->pin = pin;
this->pin->setup();
pcnt_unit_config_t unit_config = {
.low_limit = INT16_MIN,
.high_limit = INT16_MAX,
.flags = {.accum_count = true},
};
esp_err_t error = pcnt_new_unit(&unit_config, &this->pcnt_unit);
if (error != ESP_OK) {
ESP_LOGE(TAG, "Creating PCNT unit failed: %s", esp_err_to_name(error));
return false;
this->pcnt_unit = next_pcnt_unit;
this->pcnt_channel = next_pcnt_channel;
next_pcnt_unit = pcnt_unit_t(int(next_pcnt_unit) + 1);
if (int(next_pcnt_unit) >= PCNT_UNIT_0 + PCNT_UNIT_MAX) {
next_pcnt_unit = PCNT_UNIT_0;
next_pcnt_channel = pcnt_channel_t(int(next_pcnt_channel) + 1);
}
pcnt_chan_config_t chan_config = {
.edge_gpio_num = this->pin->get_pin(),
.level_gpio_num = -1,
};
error = pcnt_new_channel(this->pcnt_unit, &chan_config, &this->pcnt_channel);
if (error != ESP_OK) {
ESP_LOGE(TAG, "Creating PCNT channel failed: %s", esp_err_to_name(error));
return false;
}
ESP_LOGCONFIG(TAG,
" PCNT Unit Number: %u\n"
" PCNT Channel Number: %u",
this->pcnt_unit, this->pcnt_channel);
pcnt_channel_edge_action_t rising = PCNT_CHANNEL_EDGE_ACTION_HOLD;
pcnt_channel_edge_action_t falling = PCNT_CHANNEL_EDGE_ACTION_HOLD;
pcnt_count_mode_t rising = PCNT_COUNT_DIS, falling = PCNT_COUNT_DIS;
switch (this->rising_edge_mode) {
case PULSE_COUNTER_DISABLE:
rising = PCNT_CHANNEL_EDGE_ACTION_HOLD;
rising = PCNT_COUNT_DIS;
break;
case PULSE_COUNTER_INCREMENT:
rising = PCNT_CHANNEL_EDGE_ACTION_INCREASE;
rising = PCNT_COUNT_INC;
break;
case PULSE_COUNTER_DECREMENT:
rising = PCNT_CHANNEL_EDGE_ACTION_DECREASE;
rising = PCNT_COUNT_DEC;
break;
}
switch (this->falling_edge_mode) {
case PULSE_COUNTER_DISABLE:
falling = PCNT_CHANNEL_EDGE_ACTION_HOLD;
falling = PCNT_COUNT_DIS;
break;
case PULSE_COUNTER_INCREMENT:
falling = PCNT_CHANNEL_EDGE_ACTION_INCREASE;
falling = PCNT_COUNT_INC;
break;
case PULSE_COUNTER_DECREMENT:
falling = PCNT_CHANNEL_EDGE_ACTION_DECREASE;
falling = PCNT_COUNT_DEC;
break;
}
error = pcnt_channel_set_edge_action(this->pcnt_channel, rising, falling);
pcnt_config_t pcnt_config = {
.pulse_gpio_num = this->pin->get_pin(),
.ctrl_gpio_num = PCNT_PIN_NOT_USED,
.lctrl_mode = PCNT_MODE_KEEP,
.hctrl_mode = PCNT_MODE_KEEP,
.pos_mode = rising,
.neg_mode = falling,
.counter_h_lim = 0,
.counter_l_lim = 0,
.unit = this->pcnt_unit,
.channel = this->pcnt_channel,
};
esp_err_t error = pcnt_unit_config(&pcnt_config);
if (error != ESP_OK) {
ESP_LOGE(TAG, "Setting PCNT edge action failed: %s", esp_err_to_name(error));
ESP_LOGE(TAG, "Configuring Pulse Counter failed: %s", esp_err_to_name(error));
return false;
}
if (this->filter_us != 0) {
uint32_t apb_freq;
esp_clk_tree_src_get_freq_hz(SOC_MOD_CLK_APB, ESP_CLK_TREE_SRC_FREQ_PRECISION_CACHED, &apb_freq);
uint32_t max_glitch_ns = PCNT_LL_MAX_GLITCH_WIDTH * 1000000u / apb_freq;
pcnt_glitch_filter_config_t filter_config = {
.max_glitch_ns = std::min(this->filter_us * 1000u, max_glitch_ns),
};
error = pcnt_unit_set_glitch_filter(this->pcnt_unit, &filter_config);
uint16_t filter_val = std::min(static_cast<unsigned int>(this->filter_us * 80u), 1023u);
ESP_LOGCONFIG(TAG, " Filter Value: %" PRIu32 "us (val=%u)", this->filter_us, filter_val);
error = pcnt_set_filter_value(this->pcnt_unit, filter_val);
if (error != ESP_OK) {
ESP_LOGE(TAG, "Setting PCNT glitch filter failed: %s", esp_err_to_name(error));
ESP_LOGE(TAG, "Setting filter value failed: %s", esp_err_to_name(error));
return false;
}
error = pcnt_filter_enable(this->pcnt_unit);
if (error != ESP_OK) {
ESP_LOGE(TAG, "Enabling filter failed: %s", esp_err_to_name(error));
return false;
}
}
error = pcnt_unit_add_watch_point(this->pcnt_unit, INT16_MIN);
error = pcnt_counter_pause(this->pcnt_unit);
if (error != ESP_OK) {
ESP_LOGE(TAG, "Adding PCNT low limit watch point failed: %s", esp_err_to_name(error));
ESP_LOGE(TAG, "Pausing pulse counter failed: %s", esp_err_to_name(error));
return false;
}
error = pcnt_unit_add_watch_point(this->pcnt_unit, INT16_MAX);
error = pcnt_counter_clear(this->pcnt_unit);
if (error != ESP_OK) {
ESP_LOGE(TAG, "Adding PCNT high limit watch point failed: %s", esp_err_to_name(error));
ESP_LOGE(TAG, "Clearing pulse counter failed: %s", esp_err_to_name(error));
return false;
}
error = pcnt_unit_enable(this->pcnt_unit);
error = pcnt_counter_resume(this->pcnt_unit);
if (error != ESP_OK) {
ESP_LOGE(TAG, "Enabling PCNT unit failed: %s", esp_err_to_name(error));
return false;
}
error = pcnt_unit_clear_count(this->pcnt_unit);
if (error != ESP_OK) {
ESP_LOGE(TAG, "Clearing PCNT unit failed: %s", esp_err_to_name(error));
return false;
}
error = pcnt_unit_start(this->pcnt_unit);
if (error != ESP_OK) {
ESP_LOGE(TAG, "Starting PCNT unit failed: %s", esp_err_to_name(error));
ESP_LOGE(TAG, "Resuming pulse counter failed: %s", esp_err_to_name(error));
return false;
}
return true;
}
pulse_counter_t HwPulseCounterStorage::read_raw_value() {
int count;
pcnt_unit_get_count(this->pcnt_unit, &count);
pulse_counter_t ret = count - this->last_value;
this->last_value = count;
pulse_counter_t counter;
pcnt_get_counter_value(this->pcnt_unit, &counter);
pulse_counter_t ret = counter - this->last_value;
this->last_value = counter;
return ret;
}
#endif // HAS_PCNT

Some files were not shown because too many files have changed in this diff Show More