Files
esphome/esphome/components/mipi_dsi/mipi_dsi.cpp

386 lines
14 KiB
C++

#ifdef USE_ESP32_VARIANT_ESP32P4
#include <utility>
#include "mipi_dsi.h"
namespace esphome {
namespace mipi_dsi {
static bool notify_refresh_ready(esp_lcd_panel_handle_t panel, esp_lcd_dpi_panel_event_data_t *edata, void *user_ctx) {
auto *sem = static_cast<SemaphoreHandle_t *>(user_ctx);
BaseType_t need_yield = pdFALSE;
xSemaphoreGiveFromISR(sem, &need_yield);
return (need_yield == pdTRUE);
}
void MIPI_DSI::smark_failed(const char *message, esp_err_t err) {
ESP_LOGE(TAG, "%s: %s", message, esp_err_to_name(err));
this->mark_failed(message);
}
void MIPI_DSI::setup() {
ESP_LOGCONFIG(TAG, "Running Setup");
if (!this->enable_pins_.empty()) {
for (auto *pin : this->enable_pins_) {
pin->setup();
pin->digital_write(true);
}
delay(10);
}
esp_lcd_dsi_bus_config_t bus_config = {
.bus_id = 0, // index from 0, specify the DSI host to use
.num_data_lanes =
this->lanes_, // Number of data lanes to use, can't set a value that exceeds the chip's capability
.phy_clk_src = MIPI_DSI_PHY_CLK_SRC_DEFAULT, // Clock source for the DPHY
.lane_bit_rate_mbps = this->lane_bit_rate_, // Bit rate of the data lanes, in Mbps
};
auto err = esp_lcd_new_dsi_bus(&bus_config, &this->bus_handle_);
if (err != ESP_OK) {
this->smark_failed("lcd_new_dsi_bus failed", err);
return;
}
esp_lcd_dbi_io_config_t dbi_config = {
.virtual_channel = 0,
.lcd_cmd_bits = 8, // according to the LCD spec
.lcd_param_bits = 8, // according to the LCD spec
};
err = esp_lcd_new_panel_io_dbi(this->bus_handle_, &dbi_config, &this->io_handle_);
if (err != ESP_OK) {
this->smark_failed("new_panel_io_dbi failed", err);
return;
}
auto pixel_format = LCD_COLOR_PIXEL_FORMAT_RGB565;
if (this->color_depth_ == display::COLOR_BITNESS_888) {
pixel_format = LCD_COLOR_PIXEL_FORMAT_RGB888;
}
esp_lcd_dpi_panel_config_t dpi_config = {.virtual_channel = 0,
.dpi_clk_src = MIPI_DSI_DPI_CLK_SRC_DEFAULT,
.dpi_clock_freq_mhz = this->pclk_frequency_,
.pixel_format = pixel_format,
.num_fbs = 1, // number of frame buffers to allocate
.video_timing =
{
.h_size = this->width_,
.v_size = this->height_,
.hsync_pulse_width = this->hsync_pulse_width_,
.hsync_back_porch = this->hsync_back_porch_,
.hsync_front_porch = this->hsync_front_porch_,
.vsync_pulse_width = this->vsync_pulse_width_,
.vsync_back_porch = this->vsync_back_porch_,
.vsync_front_porch = this->vsync_front_porch_,
},
.flags = {
.use_dma2d = true,
}};
err = esp_lcd_new_panel_dpi(this->bus_handle_, &dpi_config, &this->handle_);
if (err != ESP_OK) {
this->smark_failed("esp_lcd_new_panel_dpi failed", err);
return;
}
if (this->reset_pin_ != nullptr) {
this->reset_pin_->setup();
this->reset_pin_->digital_write(true);
delay(5);
this->reset_pin_->digital_write(false);
delay(5);
this->reset_pin_->digital_write(true);
} else {
esp_lcd_panel_io_tx_param(this->io_handle_, SW_RESET_CMD, nullptr, 0);
}
// need to know when the display is ready for SLPOUT command - will be 120ms after reset
auto when = millis() + 120;
err = esp_lcd_panel_init(this->handle_);
if (err != ESP_OK) {
this->smark_failed("esp_lcd_init failed", err);
return;
}
size_t index = 0;
auto &vec = this->init_sequence_;
while (index != vec.size()) {
if (vec.size() - index < 2) {
this->mark_failed("Malformed init sequence");
return;
}
uint8_t cmd = vec[index++];
uint8_t x = vec[index++];
if (x == DELAY_FLAG) {
ESP_LOGD(TAG, "Delay %dms", cmd);
delay(cmd);
} else {
uint8_t num_args = x & 0x7F;
if (vec.size() - index < num_args) {
this->mark_failed("Malformed init sequence");
return;
}
if (cmd == SLEEP_OUT) {
// are we ready, boots?
int duration = when - millis();
if (duration > 0) {
delay(duration);
}
}
const auto *ptr = vec.data() + index;
ESP_LOGVV(TAG, "Command %02X, length %d, byte(s) %s", cmd, num_args,
format_hex_pretty(ptr, num_args, '.', false).c_str());
err = esp_lcd_panel_io_tx_param(this->io_handle_, cmd, ptr, num_args);
if (err != ESP_OK) {
this->smark_failed("lcd_panel_io_tx_param failed", err);
return;
}
index += num_args;
if (cmd == SLEEP_OUT)
delay(10);
}
}
this->io_lock_ = xSemaphoreCreateBinary();
esp_lcd_dpi_panel_event_callbacks_t cbs = {
.on_color_trans_done = notify_refresh_ready,
};
err = (esp_lcd_dpi_panel_register_event_callbacks(this->handle_, &cbs, this->io_lock_));
if (err != ESP_OK) {
this->smark_failed("Failed to register callbacks", err);
return;
}
ESP_LOGCONFIG(TAG, "MIPI DSI setup complete");
}
void MIPI_DSI::update() {
if (this->auto_clear_enabled_) {
this->clear();
}
if (this->show_test_card_) {
this->test_card();
} else if (this->page_ != nullptr) {
this->page_->get_writer()(*this);
} else if (this->writer_.has_value()) {
(*this->writer_)(*this);
} else {
this->stop_poller();
}
if (this->buffer_ == nullptr || this->x_low_ > this->x_high_ || this->y_low_ > this->y_high_)
return;
ESP_LOGV(TAG, "x_low %d, y_low %d, x_high %d, y_high %d", this->x_low_, this->y_low_, this->x_high_, this->y_high_);
int w = this->x_high_ - this->x_low_ + 1;
int h = this->y_high_ - this->y_low_ + 1;
this->write_to_display_(this->x_low_, this->y_low_, w, h, this->buffer_, this->x_low_, this->y_low_,
this->width_ - w - this->x_low_);
// invalidate watermarks
this->x_low_ = this->width_;
this->y_low_ = this->height_;
this->x_high_ = 0;
this->y_high_ = 0;
}
void MIPI_DSI::draw_pixels_at(int x_start, int y_start, int w, int h, const uint8_t *ptr, display::ColorOrder order,
display::ColorBitness bitness, bool big_endian, int x_offset, int y_offset, int x_pad) {
if (w <= 0 || h <= 0)
return;
// if color mapping is required, pass the buck.
// note that endianness is not considered here - it is assumed to match!
if (bitness != this->color_depth_) {
display::Display::draw_pixels_at(x_start, y_start, w, h, ptr, order, bitness, big_endian, x_offset, y_offset,
x_pad);
}
this->write_to_display_(x_start, y_start, w, h, ptr, x_offset, y_offset, x_pad);
}
void MIPI_DSI::write_to_display_(int x_start, int y_start, int w, int h, const uint8_t *ptr, int x_offset, int y_offset,
int x_pad) {
esp_err_t err = ESP_OK;
auto bytes_per_pixel = 3 - this->color_depth_;
auto stride = (x_offset + w + x_pad) * bytes_per_pixel;
ptr += y_offset * stride + x_offset * bytes_per_pixel; // skip to the first pixel
// x_ and y_offset are offsets into the source buffer, unrelated to our own offsets into the display.
if (x_offset == 0 && x_pad == 0) {
err = esp_lcd_panel_draw_bitmap(this->handle_, x_start, y_start, x_start + w, y_start + h, ptr);
xSemaphoreTake(this->io_lock_, portMAX_DELAY);
} else {
// draw line by line
for (int y = 0; y != h; y++) {
err = esp_lcd_panel_draw_bitmap(this->handle_, x_start, y + y_start, x_start + w, y + y_start + 1, ptr);
if (err != ESP_OK)
break;
ptr += stride; // next line
xSemaphoreTake(this->io_lock_, portMAX_DELAY);
}
}
if (err != ESP_OK)
ESP_LOGE(TAG, "lcd_lcd_panel_draw_bitmap failed: %s", esp_err_to_name(err));
}
bool MIPI_DSI::check_buffer_() {
if (this->is_failed())
return false;
if (this->buffer_ != nullptr)
return true;
// this is dependent on the enum values.
auto bytes_per_pixel = 3 - this->color_depth_;
RAMAllocator<uint8_t> allocator;
this->buffer_ = allocator.allocate(this->height_ * this->width_ * bytes_per_pixel);
if (this->buffer_ == nullptr) {
this->mark_failed("Could not allocate buffer for display!");
return false;
}
return true;
}
void MIPI_DSI::draw_pixel_at(int x, int y, Color color) {
if (!this->get_clipping().inside(x, y))
return;
switch (this->rotation_) {
case display::DISPLAY_ROTATION_0_DEGREES:
break;
case display::DISPLAY_ROTATION_90_DEGREES:
std::swap(x, y);
x = this->width_ - x - 1;
break;
case display::DISPLAY_ROTATION_180_DEGREES:
x = this->width_ - x - 1;
y = this->height_ - y - 1;
break;
case display::DISPLAY_ROTATION_270_DEGREES:
std::swap(x, y);
y = this->height_ - y - 1;
break;
}
if (x >= this->get_width_internal() || x < 0 || y >= this->get_height_internal() || y < 0) {
return;
}
auto pixel = convert_big_endian(display::ColorUtil::color_to_565(color));
if (!this->check_buffer_())
return;
size_t pos = (y * this->width_) + x;
switch (this->color_depth_) {
case display::COLOR_BITNESS_565: {
auto *ptr_16 = reinterpret_cast<uint16_t *>(this->buffer_);
uint8_t hi_byte = static_cast<uint8_t>(color.r & 0xF8) | (color.g >> 5);
uint8_t lo_byte = static_cast<uint8_t>((color.g & 0x1C) << 3) | (color.b >> 3);
uint16_t new_color = lo_byte | (hi_byte << 8); // little endian
if (ptr_16[pos] == new_color)
return;
ptr_16[pos] = new_color;
break;
}
case display::COLOR_BITNESS_888:
if (this->color_mode_ == display::COLOR_ORDER_BGR) {
this->buffer_[pos * 3] = color.b;
this->buffer_[pos * 3 + 1] = color.g;
this->buffer_[pos * 3 + 2] = color.r;
} else {
this->buffer_[pos * 3] = color.r;
this->buffer_[pos * 3 + 1] = color.g;
this->buffer_[pos * 3 + 2] = color.b;
}
break;
case display::COLOR_BITNESS_332:
break;
}
// low and high watermark may speed up drawing from buffer
if (x < this->x_low_)
this->x_low_ = x;
if (y < this->y_low_)
this->y_low_ = y;
if (x > this->x_high_)
this->x_high_ = x;
if (y > this->y_high_)
this->y_high_ = y;
}
void MIPI_DSI::fill(Color color) {
if (!this->check_buffer_())
return;
switch (this->color_depth_) {
case display::COLOR_BITNESS_565: {
auto *ptr_16 = reinterpret_cast<uint16_t *>(this->buffer_);
uint8_t hi_byte = static_cast<uint8_t>(color.r & 0xF8) | (color.g >> 5);
uint8_t lo_byte = static_cast<uint8_t>((color.g & 0x1C) << 3) | (color.b >> 3);
uint16_t new_color = lo_byte | (hi_byte << 8); // little endian
std::fill_n(ptr_16, this->width_ * this->height_, new_color);
break;
}
case display::COLOR_BITNESS_888:
if (this->color_mode_ == display::COLOR_ORDER_BGR) {
for (size_t i = 0; i != this->width_ * this->height_; i++) {
this->buffer_[i * 3 + 0] = color.b;
this->buffer_[i * 3 + 1] = color.g;
this->buffer_[i * 3 + 2] = color.r;
}
} else {
for (size_t i = 0; i != this->width_ * this->height_; i++) {
this->buffer_[i * 3 + 0] = color.r;
this->buffer_[i * 3 + 1] = color.g;
this->buffer_[i * 3 + 2] = color.b;
}
}
default:
break;
}
}
int MIPI_DSI::get_width() {
switch (this->rotation_) {
case display::DISPLAY_ROTATION_90_DEGREES:
case display::DISPLAY_ROTATION_270_DEGREES:
return this->get_height_internal();
case display::DISPLAY_ROTATION_0_DEGREES:
case display::DISPLAY_ROTATION_180_DEGREES:
default:
return this->get_width_internal();
}
}
int MIPI_DSI::get_height() {
switch (this->rotation_) {
case display::DISPLAY_ROTATION_0_DEGREES:
case display::DISPLAY_ROTATION_180_DEGREES:
return this->get_height_internal();
case display::DISPLAY_ROTATION_90_DEGREES:
case display::DISPLAY_ROTATION_270_DEGREES:
default:
return this->get_width_internal();
}
}
static const uint8_t PIXEL_MODES[] = {0, 16, 18, 24};
void MIPI_DSI::dump_config() {
ESP_LOGCONFIG(TAG,
"MIPI_DSI RGB LCD"
"\n Model: %s"
"\n Width: %u"
"\n Height: %u"
"\n Mirror X: %s"
"\n Mirror Y: %s"
"\n Swap X/Y: %s"
"\n Rotation: %d degrees"
"\n DSI Lanes: %u"
"\n Lane Bit Rate: %uMbps"
"\n HSync Pulse Width: %u"
"\n HSync Back Porch: %u"
"\n HSync Front Porch: %u"
"\n VSync Pulse Width: %u"
"\n VSync Back Porch: %u"
"\n VSync Front Porch: %u"
"\n Buffer Color Depth: %d bit"
"\n Display Pixel Mode: %d bit"
"\n Color Order: %s"
"\n Invert Colors: %s"
"\n Pixel Clock: %dMHz",
this->model_, this->width_, this->height_, YESNO(this->madctl_ & (MADCTL_XFLIP | MADCTL_MX)),
YESNO(this->madctl_ & (MADCTL_YFLIP | MADCTL_MY)), YESNO(this->madctl_ & MADCTL_MV), this->rotation_,
this->lanes_, this->lane_bit_rate_, this->hsync_pulse_width_, this->hsync_back_porch_,
this->hsync_front_porch_, this->vsync_pulse_width_, this->vsync_back_porch_, this->vsync_front_porch_,
(3 - this->color_depth_) * 8, this->pixel_mode_, this->madctl_ & MADCTL_BGR ? "BGR" : "RGB",
YESNO(this->invert_colors_), this->pclk_frequency_);
LOG_PIN(" Reset Pin ", this->reset_pin_);
}
} // namespace mipi_dsi
} // namespace esphome
#endif // USE_ESP32_VARIANT_ESP32P4