Files
esphome/esphome/components/remote_base/symphony_protocol.cpp

121 lines
4.2 KiB
C++

#include "symphony_protocol.h"
#include "esphome/core/log.h"
namespace esphome {
namespace remote_base {
static const char *const TAG = "remote.symphony";
// Reference implementation and timing details:
// IRremoteESP8266 ir_Symphony.cpp
// https://github.com/crankyoldgit/IRremoteESP8266/blob/master/src/ir_Symphony.cpp
// The implementation below mirrors the constant bit-time mapping and
// footer-gap handling used there.
// Symphony protocol timing specifications (tuned to handset captures)
static const uint32_t BIT_ZERO_HIGH_US = 460; // short
static const uint32_t BIT_ZERO_LOW_US = 1260; // long
static const uint32_t BIT_ONE_HIGH_US = 1260; // long
static const uint32_t BIT_ONE_LOW_US = 460; // short
static const uint32_t CARRIER_FREQUENCY = 38000;
// IRremoteESP8266 reference: kSymphonyFooterGap = 4 * (mark + space)
static const uint32_t FOOTER_GAP_US = 4 * (BIT_ZERO_HIGH_US + BIT_ZERO_LOW_US);
// Typical inter-frame gap (~34.8 ms observed)
static const uint32_t INTER_FRAME_GAP_US = 34760;
void SymphonyProtocol::encode(RemoteTransmitData *dst, const SymphonyData &data) {
dst->set_carrier_frequency(CARRIER_FREQUENCY);
ESP_LOGD(TAG, "Sending Symphony: data=0x%0*X nbits=%u repeats=%u", (data.nbits + 3) / 4, (uint32_t) data.data,
data.nbits, data.repeats);
// Each bit produces a mark+space (2 entries). We fold the inter-frame/footer gap
// into the last bit's space of each frame to avoid over-length gaps.
dst->reserve(data.nbits * 2u * data.repeats);
for (uint8_t repeats = 0; repeats < data.repeats; repeats++) {
// Data bits (MSB first)
for (uint32_t mask = 1UL << (data.nbits - 1); mask != 0; mask >>= 1) {
const bool is_last_bit = (mask == 1);
const bool is_last_frame = (repeats == (data.repeats - 1));
if (is_last_bit) {
// Emit last bit's mark; replace its space with the proper gap
if (data.data & mask) {
dst->mark(BIT_ONE_HIGH_US);
} else {
dst->mark(BIT_ZERO_HIGH_US);
}
dst->space(is_last_frame ? FOOTER_GAP_US : INTER_FRAME_GAP_US);
} else {
if (data.data & mask) {
dst->item(BIT_ONE_HIGH_US, BIT_ONE_LOW_US);
} else {
dst->item(BIT_ZERO_HIGH_US, BIT_ZERO_LOW_US);
}
}
}
}
}
optional<SymphonyData> SymphonyProtocol::decode(RemoteReceiveData src) {
auto is_valid_len = [](uint8_t nbits) -> bool { return nbits == 8 || nbits == 12 || nbits == 16; };
RemoteReceiveData s = src; // copy
SymphonyData out{0, 0, 1};
for (; out.nbits < 32; out.nbits++) {
if (s.expect_mark(BIT_ONE_HIGH_US)) {
if (!s.expect_space(BIT_ONE_LOW_US)) {
// Allow footer gap immediately after the last mark
if (s.peek_space_at_least(FOOTER_GAP_US)) {
uint8_t bits_with_this = out.nbits + 1;
if (is_valid_len(bits_with_this)) {
out.data = (out.data << 1UL) | 1UL;
out.nbits = bits_with_this;
return out;
}
}
return {};
}
// Successfully consumed a '1' bit (mark + space)
out.data = (out.data << 1UL) | 1UL;
continue;
} else if (s.expect_mark(BIT_ZERO_HIGH_US)) {
if (!s.expect_space(BIT_ZERO_LOW_US)) {
// Allow footer gap immediately after the last mark
if (s.peek_space_at_least(FOOTER_GAP_US)) {
uint8_t bits_with_this = out.nbits + 1;
if (is_valid_len(bits_with_this)) {
out.data = (out.data << 1UL) | 0UL;
out.nbits = bits_with_this;
return out;
}
}
return {};
}
// Successfully consumed a '0' bit (mark + space)
out.data = (out.data << 1UL) | 0UL;
continue;
} else {
// Completed a valid-length frame followed by a footer gap
if (is_valid_len(out.nbits) && s.peek_space_at_least(FOOTER_GAP_US)) {
return out;
}
return {};
}
}
if (is_valid_len(out.nbits) && s.peek_space_at_least(FOOTER_GAP_US)) {
return out;
}
return {};
}
void SymphonyProtocol::dump(const SymphonyData &data) {
const int32_t hex_width = (data.nbits + 3) / 4; // pad to nibble width
ESP_LOGI(TAG, "Received Symphony: data=0x%0*X, nbits=%d", hex_width, (uint32_t) data.data, data.nbits);
}
} // namespace remote_base
} // namespace esphome