Files
esphome/esphome/components/debug/debug_esp32.cpp

260 lines
8.4 KiB
C++

#include "debug_component.h"
#ifdef USE_ESP32
#include "esphome/core/application.h"
#include "esphome/core/log.h"
#include "esphome/core/hal.h"
#include <esp_sleep.h>
#include <esp_heap_caps.h>
#include <esp_system.h>
#include <esp_chip_info.h>
#include <esp_partition.h>
#ifdef USE_ARDUINO
#include <Esp.h>
#endif
namespace esphome {
namespace debug {
static const char *const TAG = "debug";
// index by values returned by esp_reset_reason
static const char *const RESET_REASONS[] = {
"unknown source",
"power-on event",
"external pin",
"software via esp_restart",
"exception/panic",
"interrupt watchdog",
"task watchdog",
"other watchdogs",
"exiting deep sleep mode",
"brownout",
"SDIO",
"USB peripheral",
"JTAG",
"efuse error",
"power glitch detected",
"CPU lock up",
};
static const char *const REBOOT_KEY = "reboot_source";
static const size_t REBOOT_MAX_LEN = 24;
// on shutdown, store the source of the reboot request
void DebugComponent::on_shutdown() {
auto *component = App.get_current_component();
char buffer[REBOOT_MAX_LEN]{};
auto pref = global_preferences->make_preference(REBOOT_MAX_LEN, fnv1_hash(REBOOT_KEY + App.get_name()));
if (component != nullptr) {
strncpy(buffer, LOG_STR_ARG(component->get_component_log_str()), REBOOT_MAX_LEN - 1);
buffer[REBOOT_MAX_LEN - 1] = '\0';
}
ESP_LOGD(TAG, "Storing reboot source: %s", buffer);
pref.save(&buffer);
global_preferences->sync();
}
const char *DebugComponent::get_reset_reason_(std::span<char, RESET_REASON_BUFFER_SIZE> buffer) {
char *buf = buffer.data();
const size_t size = RESET_REASON_BUFFER_SIZE;
unsigned reason = esp_reset_reason();
if (reason < sizeof(RESET_REASONS) / sizeof(RESET_REASONS[0])) {
if (reason == ESP_RST_SW) {
auto pref = global_preferences->make_preference(REBOOT_MAX_LEN, fnv1_hash(REBOOT_KEY + App.get_name()));
char reboot_source[REBOOT_MAX_LEN]{};
if (pref.load(&reboot_source)) {
reboot_source[REBOOT_MAX_LEN - 1] = '\0';
snprintf(buf, size, "Reboot request from %s", reboot_source);
} else {
snprintf(buf, size, "%s", RESET_REASONS[reason]);
}
} else {
snprintf(buf, size, "%s", RESET_REASONS[reason]);
}
} else {
snprintf(buf, size, "unknown source");
}
ESP_LOGD(TAG, "Reset Reason: %s", buf);
return buf;
}
static const char *const WAKEUP_CAUSES[] = {
"undefined",
"undefined",
"external signal using RTC_IO",
"external signal using RTC_CNTL",
"timer",
"touchpad",
"ULP program",
"GPIO",
"UART",
"WIFI",
"COCPU int",
"COCPU crash",
"BT",
};
const char *DebugComponent::get_wakeup_cause_(std::span<char, RESET_REASON_BUFFER_SIZE> buffer) {
const char *wake_reason;
unsigned reason = esp_sleep_get_wakeup_cause();
if (reason < sizeof(WAKEUP_CAUSES) / sizeof(WAKEUP_CAUSES[0])) {
wake_reason = WAKEUP_CAUSES[reason];
} else {
wake_reason = "unknown source";
}
ESP_LOGD(TAG, "Wakeup Reason: %s", wake_reason);
// Return the static string directly - no need to copy to buffer
return wake_reason;
}
void DebugComponent::log_partition_info_() {
ESP_LOGCONFIG(TAG,
"Partition table:\n"
" %-12s %-4s %-8s %-10s %-10s",
"Name", "Type", "Subtype", "Address", "Size");
esp_partition_iterator_t it = esp_partition_find(ESP_PARTITION_TYPE_ANY, ESP_PARTITION_SUBTYPE_ANY, NULL);
while (it != NULL) {
const esp_partition_t *partition = esp_partition_get(it);
ESP_LOGCONFIG(TAG, " %-12s %-4d %-8d 0x%08" PRIX32 " 0x%08" PRIX32, partition->label, partition->type,
partition->subtype, partition->address, partition->size);
it = esp_partition_next(it);
}
esp_partition_iterator_release(it);
}
uint32_t DebugComponent::get_free_heap_() { return heap_caps_get_free_size(MALLOC_CAP_INTERNAL); }
struct ChipFeature {
int bit;
const char *name;
};
static constexpr ChipFeature CHIP_FEATURES[] = {
{CHIP_FEATURE_BLE, "BLE"},
{CHIP_FEATURE_BT, "BT"},
{CHIP_FEATURE_EMB_FLASH, "EMB Flash"},
{CHIP_FEATURE_EMB_PSRAM, "EMB PSRAM"},
{CHIP_FEATURE_WIFI_BGN, "2.4GHz WiFi"},
};
size_t DebugComponent::get_device_info_(std::span<char, DEVICE_INFO_BUFFER_SIZE> buffer, size_t pos) {
constexpr size_t size = DEVICE_INFO_BUFFER_SIZE;
char *buf = buffer.data();
#if defined(USE_ARDUINO)
const char *flash_mode;
switch (ESP.getFlashChipMode()) { // NOLINT(readability-static-accessed-through-instance)
case FM_QIO:
flash_mode = "QIO";
break;
case FM_QOUT:
flash_mode = "QOUT";
break;
case FM_DIO:
flash_mode = "DIO";
break;
case FM_DOUT:
flash_mode = "DOUT";
break;
case FM_FAST_READ:
flash_mode = "FAST_READ";
break;
case FM_SLOW_READ:
flash_mode = "SLOW_READ";
break;
default:
flash_mode = "UNKNOWN";
}
uint32_t flash_size = ESP.getFlashChipSize() / 1024; // NOLINT
uint32_t flash_speed = ESP.getFlashChipSpeed() / 1000000; // NOLINT
ESP_LOGD(TAG, "Flash Chip: Size=%" PRIu32 "kB Speed=%" PRIu32 "MHz Mode=%s", flash_size, flash_speed, flash_mode);
pos = buf_append_printf(buf, size, pos, "|Flash: %" PRIu32 "kB Speed:%" PRIu32 "MHz Mode:%s", flash_size, flash_speed,
flash_mode);
#endif
esp_chip_info_t info;
esp_chip_info(&info);
const char *model = ESPHOME_VARIANT;
// Build features string
pos = buf_append_printf(buf, size, pos, "|Chip: %s Features:", model);
bool first_feature = true;
for (const auto &feature : CHIP_FEATURES) {
if (info.features & feature.bit) {
pos = buf_append_printf(buf, size, pos, "%s%s", first_feature ? "" : ", ", feature.name);
first_feature = false;
info.features &= ~feature.bit;
}
}
if (info.features != 0) {
pos = buf_append_printf(buf, size, pos, "%sOther:0x%" PRIx32, first_feature ? "" : ", ", info.features);
}
ESP_LOGD(TAG, "Chip: Model=%s, Cores=%u, Revision=%u", model, info.cores, info.revision);
pos = buf_append_printf(buf, size, pos, " Cores:%u Revision:%u", info.cores, info.revision);
uint32_t cpu_freq_mhz = arch_get_cpu_freq_hz() / 1000000;
ESP_LOGD(TAG, "CPU Frequency: %" PRIu32 " MHz", cpu_freq_mhz);
pos = buf_append_printf(buf, size, pos, "|CPU Frequency: %" PRIu32 " MHz", cpu_freq_mhz);
// Framework detection
#ifdef USE_ARDUINO
ESP_LOGD(TAG, "Framework: Arduino");
pos = buf_append_printf(buf, size, pos, "|Framework: Arduino");
#elif defined(USE_ESP32)
ESP_LOGD(TAG, "Framework: ESP-IDF");
pos = buf_append_printf(buf, size, pos, "|Framework: ESP-IDF");
#else
ESP_LOGW(TAG, "Framework: UNKNOWN");
pos = buf_append_printf(buf, size, pos, "|Framework: UNKNOWN");
#endif
ESP_LOGD(TAG, "ESP-IDF Version: %s", esp_get_idf_version());
pos = buf_append_printf(buf, size, pos, "|ESP-IDF: %s", esp_get_idf_version());
uint8_t mac[6];
get_mac_address_raw(mac);
ESP_LOGD(TAG, "EFuse MAC: %02X:%02X:%02X:%02X:%02X:%02X", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
pos = buf_append_printf(buf, size, pos, "|EFuse MAC: %02X:%02X:%02X:%02X:%02X:%02X", mac[0], mac[1], mac[2], mac[3],
mac[4], mac[5]);
char reason_buffer[RESET_REASON_BUFFER_SIZE];
const char *reset_reason = get_reset_reason_(std::span<char, RESET_REASON_BUFFER_SIZE>(reason_buffer));
pos = buf_append_printf(buf, size, pos, "|Reset: %s", reset_reason);
const char *wakeup_cause = get_wakeup_cause_(std::span<char, RESET_REASON_BUFFER_SIZE>(reason_buffer));
pos = buf_append_printf(buf, size, pos, "|Wakeup: %s", wakeup_cause);
return pos;
}
void DebugComponent::update_platform_() {
#ifdef USE_SENSOR
uint32_t max_alloc = heap_caps_get_largest_free_block(MALLOC_CAP_INTERNAL);
if (this->block_sensor_ != nullptr) {
this->block_sensor_->publish_state(max_alloc);
}
if (this->min_free_sensor_ != nullptr) {
this->min_free_sensor_->publish_state(heap_caps_get_minimum_free_size(MALLOC_CAP_INTERNAL));
}
if (this->fragmentation_sensor_ != nullptr) {
uint32_t free_heap = heap_caps_get_free_size(MALLOC_CAP_INTERNAL);
if (free_heap > 0) {
float fragmentation = 100.0f - (100.0f * max_alloc / free_heap);
this->fragmentation_sensor_->publish_state(fragmentation);
}
}
if (this->psram_sensor_ != nullptr) {
this->psram_sensor_->publish_state(heap_caps_get_free_size(MALLOC_CAP_SPIRAM));
}
#endif
}
} // namespace debug
} // namespace esphome
#endif // USE_ESP32