Files
esphome/esphome/components/logger/logger.h
J. Nick Koston 30f9bfaf83 [logger] Resolve thread name once and pass through logging chain
Eliminate redundant xTaskGetCurrentTaskHandle() and pcTaskGetName()
calls on the hot path by resolving the thread name once in log_vprintf_
and passing it through as const char* to all downstream functions.

- Main task fast path passes nullptr (no task handle lookup needed)
- Non-main thread path resolves name once, passes to both ring buffer
  and emergency console fallback
- Unify log_vprintf_non_main_thread_ to single signature across platforms
- Change send_message_thread_safe() on all platforms from TaskHandle_t
  to const char* thread_name
- Add TaskHandle_t overload for get_thread_name_ as primary on
  ESP32/LibreTiny, with no-arg convenience wrapper
- Use std::span<char> for Host/Zephyr get_thread_name_ buffer parameter
- Document Zephyr single-task path thread safety limitation
2026-02-07 07:47:00 +01:00

684 lines
24 KiB
C++

#pragma once
#include <cstdarg>
#include <map>
#include <span>
#include <type_traits>
#if defined(USE_ESP32) || defined(USE_HOST)
#include <pthread.h>
#endif
#include "esphome/core/automation.h"
#include "esphome/core/component.h"
#include "esphome/core/defines.h"
#include "esphome/core/helpers.h"
#include "esphome/core/log.h"
#ifdef USE_ESPHOME_TASK_LOG_BUFFER
#ifdef USE_HOST
#include "task_log_buffer_host.h"
#elif defined(USE_ESP32)
#include "task_log_buffer_esp32.h"
#elif defined(USE_LIBRETINY)
#include "task_log_buffer_libretiny.h"
#endif
#endif
#ifdef USE_ARDUINO
#if defined(USE_ESP8266)
#include <HardwareSerial.h>
#endif // USE_ESP8266
#ifdef USE_RP2040
#include <HardwareSerial.h>
#include <SerialUSB.h>
#endif // USE_RP2040
#endif // USE_ARDUINO
#ifdef USE_ESP32
#include <driver/uart.h>
#endif // USE_ESP32
#ifdef USE_ZEPHYR
#include <zephyr/kernel.h>
struct device;
#endif
namespace esphome::logger {
/** Interface for receiving log messages without std::function overhead.
*
* Components can implement this interface instead of using lambdas with std::function
* to reduce flash usage from std::function type erasure machinery.
*
* Usage:
* class MyComponent : public Component, public LogListener {
* public:
* void setup() override {
* if (logger::global_logger != nullptr)
* logger::global_logger->add_log_listener(this);
* }
* void on_log(uint8_t level, const char *tag, const char *message, size_t message_len) override {
* // Handle log message
* }
* };
*/
class LogListener {
public:
virtual void on_log(uint8_t level, const char *tag, const char *message, size_t message_len) = 0;
};
#ifdef USE_LOGGER_LEVEL_LISTENERS
/** Interface for receiving log level changes without std::function overhead.
*
* Components can implement this interface instead of using lambdas with std::function
* to reduce flash usage from std::function type erasure machinery.
*
* Usage:
* class MyComponent : public Component, public LoggerLevelListener {
* public:
* void setup() override {
* if (logger::global_logger != nullptr)
* logger::global_logger->add_logger_level_listener(this);
* }
* void on_log_level_change(uint8_t level) override {
* // Handle log level change
* }
* };
*/
class LoggerLevelListener {
public:
virtual void on_log_level_change(uint8_t level) = 0;
};
#endif
#ifdef USE_LOGGER_RUNTIME_TAG_LEVELS
// Comparison function for const char* keys in log_levels_ map
struct CStrCompare {
bool operator()(const char *a, const char *b) const { return strcmp(a, b) < 0; }
};
#endif
// ANSI color code last digit (30-38 range, store only last digit to save RAM)
static constexpr char LOG_LEVEL_COLOR_DIGIT[] = {
'\0', // NONE
'1', // ERROR (31 = red)
'3', // WARNING (33 = yellow)
'2', // INFO (32 = green)
'5', // CONFIG (35 = magenta)
'6', // DEBUG (36 = cyan)
'7', // VERBOSE (37 = gray)
'8', // VERY_VERBOSE (38 = white)
};
static constexpr char LOG_LEVEL_LETTER_CHARS[] = {
'\0', // NONE
'E', // ERROR
'W', // WARNING
'I', // INFO
'C', // CONFIG
'D', // DEBUG
'V', // VERBOSE (VERY_VERBOSE uses two 'V's)
};
// Maximum header size: 35 bytes fixed + 32 bytes tag + 16 bytes thread name = 83 bytes (45 byte safety margin)
static constexpr uint16_t MAX_HEADER_SIZE = 128;
// "0x" + 2 hex digits per byte + '\0'
static constexpr size_t MAX_POINTER_REPRESENTATION = 2 + sizeof(void *) * 2 + 1;
// Stack buffer size for retrieving thread/task names from the OS
// macOS allows up to 64 bytes, Linux up to 16
static constexpr size_t THREAD_NAME_BUF_SIZE = 64;
// Buffer wrapper for log formatting functions
struct LogBuffer {
char *data;
uint16_t size;
uint16_t pos{0};
// Replaces the null terminator with a newline for console output.
// Must be called after notify_listeners_() since listeners need null-terminated strings.
// Console output uses length-based writes (buf.pos), so null terminator is not needed.
void terminate_with_newline() {
if (this->pos < this->size) {
this->data[this->pos++] = '\n';
} else if (this->size > 0) {
// Buffer was full - replace last char with newline to ensure it's visible
this->data[this->size - 1] = '\n';
this->pos = this->size;
}
}
void HOT write_header(uint8_t level, const char *tag, int line, const char *thread_name) {
// Early return if insufficient space - intentionally don't update pos to prevent partial writes
if (this->pos + MAX_HEADER_SIZE > this->size)
return;
char *p = this->current_();
// Write ANSI color
this->write_ansi_color_(p, level);
// Construct: [LEVEL][tag:line]
*p++ = '[';
if (level != 0) {
if (level >= 7) {
*p++ = 'V'; // VERY_VERBOSE = "VV"
*p++ = 'V';
} else {
*p++ = LOG_LEVEL_LETTER_CHARS[level];
}
}
*p++ = ']';
*p++ = '[';
// Copy tag
this->copy_string_(p, tag);
*p++ = ':';
// Format line number without modulo operations
if (line > 999) [[unlikely]] {
int thousands = line / 1000;
*p++ = '0' + thousands;
line -= thousands * 1000;
}
int hundreds = line / 100;
int remainder = line - hundreds * 100;
int tens = remainder / 10;
*p++ = '0' + hundreds;
*p++ = '0' + tens;
*p++ = '0' + (remainder - tens * 10);
*p++ = ']';
#if defined(USE_ESP32) || defined(USE_LIBRETINY) || defined(USE_ZEPHYR) || defined(USE_HOST)
// Write thread name with bold red color
if (thread_name != nullptr) {
this->write_ansi_color_(p, 1); // Bold red for thread name
*p++ = '[';
this->copy_string_(p, thread_name);
*p++ = ']';
this->write_ansi_color_(p, level); // Restore original color
}
#endif
*p++ = ':';
*p++ = ' ';
this->pos = p - this->data;
}
void HOT format_body(const char *format, va_list args) {
this->format_vsnprintf_(format, args);
this->finalize_();
}
#ifdef USE_STORE_LOG_STR_IN_FLASH
void HOT format_body_P(PGM_P format, va_list args) {
this->format_vsnprintf_P_(format, args);
this->finalize_();
}
#endif
void write_body(const char *text, uint16_t text_length) {
this->write_(text, text_length);
this->finalize_();
}
private:
bool full_() const { return this->pos >= this->size; }
uint16_t remaining_() const { return this->size - this->pos; }
char *current_() { return this->data + this->pos; }
void write_(const char *value, uint16_t length) {
const uint16_t available = this->remaining_();
const uint16_t copy_len = (length < available) ? length : available;
if (copy_len > 0) {
memcpy(this->current_(), value, copy_len);
this->pos += copy_len;
}
}
void finalize_() {
// Write color reset sequence
static constexpr uint16_t RESET_COLOR_LEN = sizeof(ESPHOME_LOG_RESET_COLOR) - 1;
this->write_(ESPHOME_LOG_RESET_COLOR, RESET_COLOR_LEN);
// Null terminate
this->data[this->full_() ? this->size - 1 : this->pos] = '\0';
}
void strip_trailing_newlines_() {
while (this->pos > 0 && this->data[this->pos - 1] == '\n')
this->pos--;
}
void process_vsnprintf_result_(int ret) {
if (ret < 0)
return;
const uint16_t rem = this->remaining_();
this->pos += (ret >= rem) ? (rem - 1) : static_cast<uint16_t>(ret);
this->strip_trailing_newlines_();
}
void format_vsnprintf_(const char *format, va_list args) {
if (this->full_())
return;
this->process_vsnprintf_result_(vsnprintf(this->current_(), this->remaining_(), format, args));
}
#ifdef USE_STORE_LOG_STR_IN_FLASH
void format_vsnprintf_P_(PGM_P format, va_list args) {
if (this->full_())
return;
this->process_vsnprintf_result_(vsnprintf_P(this->current_(), this->remaining_(), format, args));
}
#endif
// Write ANSI color escape sequence to buffer, updates pointer in place
// Caller is responsible for ensuring buffer has sufficient space
void write_ansi_color_(char *&p, uint8_t level) {
if (level == 0)
return;
// Direct buffer fill: "\033[{bold};3{color}m" (7 bytes)
*p++ = '\033';
*p++ = '[';
*p++ = (level == 1) ? '1' : '0'; // Only ERROR is bold
*p++ = ';';
*p++ = '3';
*p++ = LOG_LEVEL_COLOR_DIGIT[level];
*p++ = 'm';
}
// Copy string without null terminator, updates pointer in place
// Caller is responsible for ensuring buffer has sufficient space
void copy_string_(char *&p, const char *str) {
const size_t len = strlen(str);
// NOLINTNEXTLINE(bugprone-not-null-terminated-result) - intentionally no null terminator, building string piece by
// piece
memcpy(p, str, len);
p += len;
}
};
#if defined(USE_ESP32) || defined(USE_ESP8266) || defined(USE_RP2040) || defined(USE_LIBRETINY) || defined(USE_ZEPHYR)
/** Enum for logging UART selection
*
* Advanced configuration (pin selection, etc) is not supported.
*/
enum UARTSelection : uint8_t {
#ifdef USE_LIBRETINY
UART_SELECTION_DEFAULT = 0,
UART_SELECTION_UART0,
#else
UART_SELECTION_UART0 = 0,
#endif
UART_SELECTION_UART1,
#if defined(USE_LIBRETINY) || defined(USE_ESP32_VARIANT_ESP32)
UART_SELECTION_UART2,
#endif
#ifdef USE_LOGGER_USB_CDC
UART_SELECTION_USB_CDC,
#endif
#ifdef USE_LOGGER_USB_SERIAL_JTAG
UART_SELECTION_USB_SERIAL_JTAG,
#endif
#ifdef USE_ESP8266
UART_SELECTION_UART0_SWAP,
#endif // USE_ESP8266
};
#endif // USE_ESP32 || USE_ESP8266 || USE_RP2040 || USE_LIBRETINY || USE_ZEPHYR
/**
* @brief Logger component for all ESPHome logging.
*
* This class implements a multi-platform logging system with protection against recursion.
*
* Recursion Protection Strategy:
* - On ESP32: Uses task-specific recursion guards
* * Main task: Uses a dedicated boolean member variable for efficiency
* * Other tasks: Uses pthread TLS with a dynamically allocated key for task-specific state
* - On other platforms: Uses a simple global recursion guard
*
* We use pthread TLS via pthread_key_create to create a unique key for storing
* task-specific recursion state, which:
* 1. Efficiently handles multiple tasks without locks or mutexes
* 2. Works with ESP-IDF's pthread implementation that uses a linked list for TLS variables
* 3. Avoids the limitations of the fixed FreeRTOS task local storage slots
*/
class Logger : public Component {
public:
explicit Logger(uint32_t baud_rate, size_t tx_buffer_size);
#ifdef USE_ESPHOME_TASK_LOG_BUFFER
void init_log_buffer(size_t total_buffer_size);
#endif
#if defined(USE_ESPHOME_TASK_LOG_BUFFER) || (defined(USE_ZEPHYR) && defined(USE_LOGGER_USB_CDC))
void loop() override;
#endif
/// Manually set the baud rate for serial, set to 0 to disable.
void set_baud_rate(uint32_t baud_rate);
uint32_t get_baud_rate() const { return baud_rate_; }
#if defined(USE_ARDUINO) && !defined(USE_ESP32)
Stream *get_hw_serial() const { return hw_serial_; }
#endif
#ifdef USE_ESP32
uart_port_t get_uart_num() const { return uart_num_; }
void create_pthread_key() { pthread_key_create(&log_recursion_key_, nullptr); }
#endif
#ifdef USE_HOST
void create_pthread_key() { pthread_key_create(&log_recursion_key_, nullptr); }
#endif
#if defined(USE_ESP32) || defined(USE_ESP8266) || defined(USE_RP2040) || defined(USE_LIBRETINY) || defined(USE_ZEPHYR)
void set_uart_selection(UARTSelection uart_selection) { uart_ = uart_selection; }
/// Get the UART used by the logger.
UARTSelection get_uart() const;
#endif
/// Set the default log level for this logger.
void set_log_level(uint8_t level);
#ifdef USE_LOGGER_RUNTIME_TAG_LEVELS
/// Set the log level of the specified tag.
void set_log_level(const char *tag, uint8_t log_level);
#endif
uint8_t get_log_level() { return this->current_level_; }
// ========== INTERNAL METHODS ==========
// (In most use cases you won't need these)
/// Set up this component.
void pre_setup();
void dump_config() override;
inline uint8_t level_for(const char *tag);
#ifdef USE_LOG_LISTENERS
/// Register a log listener to receive log messages
void add_log_listener(LogListener *listener) { this->log_listeners_.push_back(listener); }
#else
/// No-op when log listeners are disabled
void add_log_listener(LogListener *listener) {}
#endif
#ifdef USE_LOGGER_LEVEL_LISTENERS
/// Register a listener for log level changes
void add_level_listener(LoggerLevelListener *listener) { this->level_listeners_.push_back(listener); }
#endif
float get_setup_priority() const override;
void log_vprintf_(uint8_t level, const char *tag, int line, const char *format, va_list args); // NOLINT
#ifdef USE_STORE_LOG_STR_IN_FLASH
void log_vprintf_(uint8_t level, const char *tag, int line, const __FlashStringHelper *format,
va_list args); // NOLINT
#endif
protected:
// RAII guard for recursion flags - sets flag on construction, clears on destruction
class RecursionGuard {
public:
explicit RecursionGuard(bool &flag) : flag_(flag) { flag_ = true; }
~RecursionGuard() { flag_ = false; }
RecursionGuard(const RecursionGuard &) = delete;
RecursionGuard &operator=(const RecursionGuard &) = delete;
RecursionGuard(RecursionGuard &&) = delete;
RecursionGuard &operator=(RecursionGuard &&) = delete;
private:
bool &flag_;
};
#if defined(USE_ESP32) || defined(USE_HOST) || defined(USE_LIBRETINY)
// Handles non-main thread logging only (~0.1% of calls)
// thread_name is resolved by the caller from the task handle, avoiding redundant lookups
void log_vprintf_non_main_thread_(uint8_t level, const char *tag, int line, const char *format, va_list args,
const char *thread_name);
#endif
void process_messages_();
void write_msg_(const char *msg, uint16_t len);
// Format a log message with printf-style arguments and write it to a buffer with header, footer, and null terminator
// thread_name: name of the calling thread/task, or nullptr for main task (callers already know which task they're on)
inline void HOT format_log_to_buffer_with_terminator_(uint8_t level, const char *tag, int line, const char *format,
va_list args, LogBuffer &buf, const char *thread_name) {
buf.write_header(level, tag, line, thread_name);
buf.format_body(format, args);
}
#ifdef USE_STORE_LOG_STR_IN_FLASH
// Format a log message with flash string format and write it to a buffer with header, footer, and null terminator
// ESP8266-only (single-task), thread_name is always nullptr
inline void HOT format_log_to_buffer_with_terminator_P_(uint8_t level, const char *tag, int line,
const __FlashStringHelper *format, va_list args,
LogBuffer &buf) {
buf.write_header(level, tag, line, nullptr);
buf.format_body_P(reinterpret_cast<PGM_P>(format), args);
}
#endif
// Helper to notify log listeners
inline void HOT notify_listeners_(uint8_t level, const char *tag, const LogBuffer &buf) {
#ifdef USE_LOG_LISTENERS
for (auto *listener : this->log_listeners_)
listener->on_log(level, tag, buf.data, buf.pos);
#endif
}
// Helper to write log buffer to console (replaces null terminator with newline and writes)
inline void HOT write_to_console_(LogBuffer &buf) {
buf.terminate_with_newline();
this->write_msg_(buf.data, buf.pos);
}
// Helper to write log buffer to console if logging is enabled
inline void HOT write_log_buffer_to_console_(LogBuffer &buf) {
if (this->baud_rate_ > 0)
this->write_to_console_(buf);
}
// Helper to format and send a log message to both console and listeners
// Template handles both const char* (RAM) and __FlashStringHelper* (flash) format strings
// thread_name: name of the calling thread/task, or nullptr for main task
template<typename FormatType>
inline void HOT log_message_to_buffer_and_send_(bool &recursion_guard, uint8_t level, const char *tag, int line,
FormatType format, va_list args, const char *thread_name) {
RecursionGuard guard(recursion_guard);
LogBuffer buf{this->tx_buffer_, this->tx_buffer_size_};
#ifdef USE_STORE_LOG_STR_IN_FLASH
if constexpr (std::is_same_v<FormatType, const __FlashStringHelper *>) {
this->format_log_to_buffer_with_terminator_P_(level, tag, line, format, args, buf);
} else
#endif
{
this->format_log_to_buffer_with_terminator_(level, tag, line, format, args, buf, thread_name);
}
this->notify_listeners_(level, tag, buf);
this->write_log_buffer_to_console_(buf);
}
#ifdef USE_ESPHOME_TASK_LOG_BUFFER
// Helper to format a pre-formatted message from the task log buffer and notify listeners
// Used by process_messages_ to avoid code duplication between ESP32 and host platforms
inline void HOT format_buffered_message_and_notify_(uint8_t level, const char *tag, uint16_t line,
const char *thread_name, const char *text, uint16_t text_length,
LogBuffer &buf) {
buf.write_header(level, tag, line, thread_name);
buf.write_body(text, text_length);
this->notify_listeners_(level, tag, buf);
}
#endif
#ifndef USE_HOST
const LogString *get_uart_selection_();
#endif
// Group 4-byte aligned members first
uint32_t baud_rate_;
char *tx_buffer_{nullptr};
#if defined(USE_ARDUINO) && !defined(USE_ESP32)
Stream *hw_serial_{nullptr};
#endif
#if defined(USE_ZEPHYR)
const device *uart_dev_{nullptr};
#endif
#if defined(USE_ESP32) || defined(USE_LIBRETINY) || defined(USE_ZEPHYR)
void *main_task_{nullptr}; // Main thread/task for fast path comparison
#endif
#ifdef USE_HOST
pthread_t main_thread_{}; // Main thread for pthread_equal() comparison
#endif
#ifdef USE_ESP32
// Task-specific recursion guards:
// - Main task uses a dedicated member variable for efficiency
// - Other tasks use pthread TLS with a dynamically created key via pthread_key_create
pthread_key_t log_recursion_key_; // 4 bytes
uart_port_t uart_num_; // 4 bytes (enum defaults to int size)
#endif
#ifdef USE_HOST
// Thread-specific recursion guards using pthread TLS
pthread_key_t log_recursion_key_;
#endif
// Large objects (internally aligned)
#ifdef USE_LOGGER_RUNTIME_TAG_LEVELS
std::map<const char *, uint8_t, CStrCompare> log_levels_{};
#endif
#ifdef USE_LOG_LISTENERS
StaticVector<LogListener *, ESPHOME_LOG_MAX_LISTENERS>
log_listeners_; // Log message listeners (API, MQTT, syslog, etc.)
#endif
#ifdef USE_LOGGER_LEVEL_LISTENERS
std::vector<LoggerLevelListener *> level_listeners_; // Log level change listeners
#endif
#ifdef USE_ESPHOME_TASK_LOG_BUFFER
#ifdef USE_HOST
logger::TaskLogBufferHost *log_buffer_{nullptr}; // Allocated once, never freed
#elif defined(USE_ESP32)
logger::TaskLogBuffer *log_buffer_{nullptr}; // Allocated once, never freed
#elif defined(USE_LIBRETINY)
logger::TaskLogBufferLibreTiny *log_buffer_{nullptr}; // Allocated once, never freed
#endif
#endif
// Group smaller types together at the end
uint16_t tx_buffer_size_{0};
uint8_t current_level_{ESPHOME_LOG_LEVEL_VERY_VERBOSE};
#if defined(USE_ESP32) || defined(USE_ESP8266) || defined(USE_RP2040) || defined(USE_ZEPHYR)
UARTSelection uart_{UART_SELECTION_UART0};
#endif
#ifdef USE_LIBRETINY
UARTSelection uart_{UART_SELECTION_DEFAULT};
#endif
#if defined(USE_ESP32) || defined(USE_HOST) || defined(USE_LIBRETINY)
bool main_task_recursion_guard_{false};
#ifdef USE_LIBRETINY
bool non_main_task_recursion_guard_{false}; // Shared guard for all non-main tasks on LibreTiny
#endif
#else
bool global_recursion_guard_{false}; // Simple global recursion guard for single-task platforms
#endif
// --- get_thread_name_ overloads (per-platform) ---
#if defined(USE_ESP32) || defined(USE_LIBRETINY)
// Primary overload - takes a task handle directly to avoid redundant xTaskGetCurrentTaskHandle() calls
// when the caller already has the handle (e.g. from the main task check in log_vprintf_)
const char *get_thread_name_(TaskHandle_t task) {
if (task == this->main_task_) {
return nullptr; // Main task
}
#if defined(USE_ESP32)
return pcTaskGetName(task);
#elif defined(USE_LIBRETINY)
return pcTaskGetTaskName(task);
#endif
}
// Convenience overload - gets the current task handle and delegates
const char *HOT get_thread_name_() { return this->get_thread_name_(xTaskGetCurrentTaskHandle()); }
#elif defined(USE_HOST)
// Takes a caller-provided buffer for the thread name (stack-allocated for thread safety)
const char *HOT get_thread_name_(std::span<char> buff) {
pthread_t current_thread = pthread_self();
if (pthread_equal(current_thread, main_thread_)) {
return nullptr; // Main thread
}
// For non-main threads, get the thread name into the caller-provided buffer
if (pthread_getname_np(current_thread, buff.data(), buff.size()) == 0) {
return buff.data();
}
return nullptr;
}
#elif defined(USE_ZEPHYR)
const char *HOT get_thread_name_(std::span<char> buff) {
k_tid_t current_task = k_current_get();
if (current_task == main_task_) {
return nullptr; // Main task
}
const char *name = k_thread_name_get(current_task);
if (name) {
// zephyr print task names only if debug component is present
return name;
}
std::snprintf(buff.data(), buff.size(), "%p", current_task);
return buff.data();
}
#endif
// --- Non-main task recursion guards (per-platform) ---
#if defined(USE_ESP32) || defined(USE_HOST)
// RAII guard for non-main task recursion using pthread TLS
class NonMainTaskRecursionGuard {
public:
explicit NonMainTaskRecursionGuard(pthread_key_t key) : key_(key) {
pthread_setspecific(key_, reinterpret_cast<void *>(1));
}
~NonMainTaskRecursionGuard() { pthread_setspecific(key_, nullptr); }
NonMainTaskRecursionGuard(const NonMainTaskRecursionGuard &) = delete;
NonMainTaskRecursionGuard &operator=(const NonMainTaskRecursionGuard &) = delete;
NonMainTaskRecursionGuard(NonMainTaskRecursionGuard &&) = delete;
NonMainTaskRecursionGuard &operator=(NonMainTaskRecursionGuard &&) = delete;
private:
pthread_key_t key_;
};
// Check if non-main task is already in recursion (via TLS)
inline bool HOT is_non_main_task_recursive_() const { return pthread_getspecific(log_recursion_key_) != nullptr; }
// Create RAII guard for non-main task recursion
inline NonMainTaskRecursionGuard make_non_main_task_guard_() { return NonMainTaskRecursionGuard(log_recursion_key_); }
#elif defined(USE_LIBRETINY)
// LibreTiny doesn't have FreeRTOS TLS, so use a simple approach:
// - Main task uses dedicated boolean (same as ESP32)
// - Non-main tasks share a single recursion guard
// This is safe because:
// - Recursion from logging within logging is the main concern
// - Cross-task "recursion" is prevented by the buffer mutex anyway
// - Missing a recursive call from another task is acceptable (falls back to direct output)
// Check if non-main task is already in recursion
inline bool HOT is_non_main_task_recursive_() const { return non_main_task_recursion_guard_; }
// Create RAII guard for non-main task recursion (uses shared boolean for all non-main tasks)
inline RecursionGuard make_non_main_task_guard_() { return RecursionGuard(non_main_task_recursion_guard_); }
#endif
#if defined(USE_ESP32) || defined(USE_LIBRETINY)
// Disable loop when task buffer is empty (with USB CDC check on ESP32)
inline void disable_loop_when_buffer_empty_() {
// Thread safety note: This is safe even if another task calls enable_loop_soon_any_context()
// concurrently. If that happens between our check and disable_loop(), the enable request
// will be processed on the next main loop iteration since:
// - disable_loop() takes effect immediately
// - enable_loop_soon_any_context() sets a pending flag that's checked at loop start
this->disable_loop();
}
#endif
};
extern Logger *global_logger; // NOLINT(cppcoreguidelines-avoid-non-const-global-variables)
class LoggerMessageTrigger : public Trigger<uint8_t, const char *, const char *>, public LogListener {
public:
explicit LoggerMessageTrigger(Logger *parent, uint8_t level) : level_(level) { parent->add_log_listener(this); }
void on_log(uint8_t level, const char *tag, const char *message, size_t message_len) override {
(void) message_len;
if (level <= this->level_) {
this->trigger(level, tag, message);
}
}
protected:
uint8_t level_;
};
} // namespace esphome::logger